Workflow n8n

Automatisation WordPress avec n8n : génération d'articles automatisée

Ce workflow n8n a pour objectif d'automatiser la création d'articles sur WordPress en utilisant des modèles de langage avancés. Dans un contexte où la production de contenu est essentielle pour le marketing digital, ce flux permet de générer des articles de blog de manière efficace et rapide. Les entreprises, notamment celles qui gèrent de nombreux contenus en ligne, peuvent tirer parti de cette automatisation n8n pour réduire le temps de création tout en maintenant une qualité rédactionnelle élevée.

  • Étape 1 : Le workflow débute par un déclencheur manuel, permettant à l'utilisateur de lancer le processus à tout moment.
  • Étape 2 : Il utilise ensuite plusieurs modèles de langage OpenAI pour générer du contenu basé sur des instructions spécifiques.
  • Étape 3 : Les articles sont extraits et analysés à l'aide de nœuds HTTP pour récupérer les dernières publications.
  • Étape 4 : Les URLs des articles sont extraites et traitées pour obtenir le contenu nécessaire.
  • Étape 5 : Le flux combine les articles générés et les structure selon le style et la voix de la marque, avant de les enregistrer en tant que brouillons sur WordPress. Les bénéfices business de ce workflow incluent une réduction significative du temps de création de contenu, une amélioration de la cohérence des articles publiés, et une capacité à répondre rapidement aux tendances du marché. En intégrant cette automatisation n8n, les entreprises peuvent se concentrer davantage sur des stratégies de contenu à long terme tout en assurant une production continue.
Tags clés :automatisationWordPresscontenun8ngénération d'articles
Catégorie: Manual · Tags: automatisation, WordPress, contenu, n8n, génération d'articles0

Workflow n8n WordPress, contenu, génération d'articles : vue d'ensemble

Schéma des nœuds et connexions de ce workflow n8n, généré à partir du JSON n8n.

Workflow n8n WordPress, contenu, génération d'articles : détail des nœuds

  • When clicking ‘Test workflow’

    Ce noeud déclenche le workflow lorsque l'utilisateur clique sur 'Test workflow'.

  • OpenAI Chat Model

    Ce noeud utilise le modèle de chat OpenAI pour générer des réponses basées sur les options fournies.

  • OpenAI Chat Model1

    Ce noeud utilise un autre modèle de chat OpenAI pour traiter des requêtes similaires avec des options spécifiques.

  • OpenAI Chat Model2

    Ce noeud fait appel à un troisième modèle de chat OpenAI pour générer des réponses en fonction des options données.

  • Extract Voice Characteristics

    Ce noeud extrait les caractéristiques vocales à partir du texte fourni en utilisant un extracteur d'informations.

  • Get Blog

    Ce noeud effectue une requête HTTP pour récupérer le contenu d'un blog à partir de l'URL spécifiée.

  • Get Article

    Ce noeud effectue une requête HTTP pour obtenir le contenu d'un article à partir de l'URL fournie.

  • Extract Article URLs

    Ce noeud extrait les URLs d'articles à partir du contenu HTML en utilisant des valeurs d'extraction définies.

  • Split Out URLs

    Ce noeud divise les données en fonction des URLs spécifiées dans le champ à séparer.

  • Latest Articles

    Ce noeud limite le nombre d'articles à un maximum spécifié pour le traitement ultérieur.

  • Extract Article Content

    Ce noeud extrait le contenu d'un article à partir du HTML en utilisant des valeurs d'extraction définies.

  • Combine Articles

    Ce noeud combine plusieurs articles en fonction des champs à agréger spécifiés.

  • Article Style & Brand Voice

    Ce noeud fusionne les articles en appliquant un style et une voix de marque définis.

  • Save as Draft

    Ce noeud enregistre un article en tant que brouillon sur WordPress avec le titre et des champs supplémentaires.

  • Sticky Note

    Ce noeud crée une note autocollante avec des paramètres de couleur, de taille et de contenu spécifiés.

  • Sticky Note1

    Ce noeud crée une seconde note autocollante avec des paramètres de couleur, de taille et de contenu.

  • Sticky Note2

    Ce noeud génère une troisième note autocollante avec des spécifications de couleur, de taille et de contenu.

  • Capture Existing Article Structure

    Ce noeud capture la structure d'un article existant en utilisant un modèle de langage.

  • Markdown

    Ce noeud convertit du contenu HTML en Markdown en utilisant des options spécifiées.

  • Sticky Note3

    Ce noeud crée une quatrième note autocollante avec des spécifications de couleur, de taille et de contenu.

  • Sticky Note4

    Ce noeud crée une cinquième note autocollante avec des paramètres de couleur, de taille et de contenu.

  • Content Generation Agent

    Ce noeud extrait des informations à partir du texte en utilisant un agent de génération de contenu.

  • Sticky Note6

    Ce noeud crée une sixième note autocollante avec des spécifications de couleur, de taille et de contenu.

  • Sticky Note5

    Ce noeud crée une septième note autocollante avec des paramètres de couleur, de taille et de contenu.

  • Sticky Note7

    Ce noeud définit des options et des affectations pour une nouvelle instruction d'article.

  • Sticky Note8

    Ce noeud crée une huitième note autocollante avec des spécifications de taille et de contenu.

Inscris-toi pour voir l'intégralité du workflow

Inscription gratuite

S'inscrire gratuitementBesoin d'aide ?
{
  "nodes": [
    {
      "id": "d3159589-dbb7-4cca-91f5-09e8b2e4cba8",
      "name": "When clicking ‘Test workflow’",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        240,
        500
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "b4b42b3f-ef30-4fc8-829d-59f8974c4168",
      "name": "OpenAI Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        2180,
        700
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "8gccIjcuf3gvaoEr",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "032c3012-ed8d-44eb-94f0-35790f4b616f",
      "name": "OpenAI Chat Model1",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        2980,
        460
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "8gccIjcuf3gvaoEr",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "bf922785-7e8f-4f93-bfff-813c16d93278",
      "name": "OpenAI Chat Model2",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        2020,
        520
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "8gccIjcuf3gvaoEr",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "d8d4b26f-270f-4b39-a4cd-a6e4361da591",
      "name": "Extract Voice Characteristics",
      "type": "@n8n/n8n-nodes-langchain.informationExtractor",
      "position": [
        2160,
        540
      ],
      "parameters": {
        "text": "=### Analyse the given content\n\n{{ $json.data.map(item => item.replace(/\\n/g, '')).join('\\n---\\n') }}",
        "options": {
          "systemPromptTemplate": "You help identify and define a company or individual's \"brand voice\". Using the given content belonging to the company or individual, extract all voice characteristics from it along with description and examples demonstrating it."
        },
        "schemaType": "manual",
        "inputSchema": "{\n\t\"type\": \"array\",\n    \"items\": {\n      \"type\": \"object\",\n    \t\"properties\": {\n          \"characteristic\": { \"type\": \"string\" },\n          \"description\": { \"type\": \"string\" },\n          \"examples\": { \"type\": \"array\", \"items\": { \"type\": \"string\" } }\n        }\n\t}\n}"
      },
      "typeVersion": 1
    },
    {
      "id": "8cca272c-b912-40f1-ba08-aa7c5ff7599c",
      "name": "Get Blog",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        480,
        500
      ],
      "parameters": {
        "url": "https://blog.n8n.io",
        "options": {}
      },
      "typeVersion": 4.2
    },
    {
      "id": "aa1e2a02-2e2b-4e8d-aef8-f5f7a54d9562",
      "name": "Get Article",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        1120,
        500
      ],
      "parameters": {
        "url": "=https://blog.n8n.io{{ $json.article }}",
        "options": {}
      },
      "typeVersion": 4.2
    },
    {
      "id": "78ae3dfc-5afd-452f-a2b6-bdb9dbd728bd",
      "name": "Extract Article URLs",
      "type": "n8n-nodes-base.html",
      "position": [
        640,
        500
      ],
      "parameters": {
        "options": {},
        "operation": "extractHtmlContent",
        "extractionValues": {
          "values": [
            {
              "key": "article",
              "attribute": "href",
              "cssSelector": ".item.post a.global-link",
              "returnArray": true,
              "returnValue": "attribute"
            }
          ]
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "3b2b6fea-ed2f-43ba-b6d1-e0666b88c65b",
      "name": "Split Out URLs",
      "type": "n8n-nodes-base.splitOut",
      "position": [
        800,
        500
      ],
      "parameters": {
        "options": {},
        "fieldToSplitOut": "article"
      },
      "typeVersion": 1
    },
    {
      "id": "68bb20b1-2177-4c0f-9ada-d1de69bdc2a0",
      "name": "Latest Articles",
      "type": "n8n-nodes-base.limit",
      "position": [
        960,
        500
      ],
      "parameters": {
        "maxItems": 5
      },
      "typeVersion": 1
    },
    {
      "id": "f20d7393-24c9-4a51-872e-0dce391f661c",
      "name": "Extract Article Content",
      "type": "n8n-nodes-base.html",
      "position": [
        1280,
        500
      ],
      "parameters": {
        "options": {},
        "operation": "extractHtmlContent",
        "extractionValues": {
          "values": [
            {
              "key": "data",
              "cssSelector": ".post-section",
              "returnValue": "html"
            }
          ]
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "299a04be-fe9b-47d9-b2c6-e2e4628f77e0",
      "name": "Combine Articles",
      "type": "n8n-nodes-base.aggregate",
      "position": [
        1780,
        540
      ],
      "parameters": {
        "options": {
          "mergeLists": true
        },
        "fieldsToAggregate": {
          "fieldToAggregate": [
            {
              "fieldToAggregate": "data"
            }
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "id": "8480ece7-0dc1-4682-ba9e-ded2c138d8b8",
      "name": "Article Style & Brand Voice",
      "type": "n8n-nodes-base.merge",
      "position": [
        2560,
        320
      ],
      "parameters": {
        "mode": "combine",
        "options": {},
        "combineBy": "combineByPosition"
      },
      "typeVersion": 3
    },
    {
      "id": "024efee2-5a2f-455c-a150-4b9bdce650b2",
      "name": "Save as Draft",
      "type": "n8n-nodes-base.wordpress",
      "position": [
        3460,
        320
      ],
      "parameters": {
        "title": "={{ $json.output.title }}",
        "additionalFields": {
          "slug": "={{ $json.output.title.toSnakeCase() }}",
          "format": "standard",
          "status": "draft",
          "content": "={{ $json.output.body }}"
        }
      },
      "credentials": {
        "wordpressApi": {
          "id": "YMW8mGrekjfxKJUe",
          "name": "Wordpress account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "71f4ab1e-ef61-48f3-92e8-70691f7d0750",
      "name": "Sticky Note",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        480,
        180
      ],
      "parameters": {
        "color": 7,
        "width": 606,
        "height": 264,
        "content": "## 1. Import Existing Content\n[Read more about the HTML node](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.html/)\n\nFirst, we'll need to gather existing content for the brand voice we want to replicate. This content can be blogs, social media posts or internal documents - the idea is to use this content to \"train\" our AI to produce content from the provided examples. One call out is that the quality and consistency of the content is important to get the desired results.\n\nIn this demonstration, we'll grab the latest blog posts off a corporate blog to use as an example. Since, the blog articles are likely consistent because of the source and narrower focus of the medium, it'll serve well to showcase this workflow."
      },
      "typeVersion": 1
    },
    {
      "id": "3d3a55a5-4b4a-4ea2-a39c-82b366fb81e6",
      "name": "Sticky Note1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1440,
        240
      ],
      "parameters": {
        "color": 7,
        "width": 434,
        "height": 230,
        "content": "## 2. Convert HTML to Markdown\n[Learn more about the Markdown node](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.markdown)\n\nMarkdown is a great way to optimise the article data we're sending to the LLM because it reduces the amount of tokens required but keeps all relevant writing structure information.\n\nAlso useful to get Markdown output as a response because typically it's the format authors will write in."
      },
      "typeVersion": 1
    },
    {
      "id": "08c0b683-ec06-47ce-871c-66265195ca29",
      "name": "Sticky Note2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1980,
        80
      ],
      "parameters": {
        "color": 7,
        "width": 446,
        "height": 233,
        "content": "## 3. Using AI to Analyse Article Structure and Writing Styles\n[Read more about the Basic LLM Chain node](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainllm)\n\nOur approach is to first perform a high-level analysis of all available articles in order to replicate their content layout and writing styles. This will act as a guideline to help the AI to structure our future articles."
      },
      "typeVersion": 1
    },
    {
      "id": "515fe69f-061e-4dfc-94ed-4cf2fbe10b7b",
      "name": "Capture Existing Article Structure",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        2020,
        380
      ],
      "parameters": {
        "text": "={{ $json.data.join('\\n---\\n') }}",
        "messages": {
          "messageValues": [
            {
              "message": "=Given the following one or more articles (which are separated by ---), describe how best one could replicate the common structure, layout, language and writing styles of all as aggregate."
            }
          ]
        },
        "promptType": "define"
      },
      "typeVersion": 1.4
    },
    {
      "id": "ba4e68fb-eccc-4efa-84be-c42a695dccdb",
      "name": "Markdown",
      "type": "n8n-nodes-base.markdown",
      "position": [
        1600,
        540
      ],
      "parameters": {
        "html": "={{ $json.data }}",
        "options": {}
      },
      "typeVersion": 1
    },
    {
      "id": "d459ff5b-0375-4458-a49f-59700bb57e12",
      "name": "Sticky Note3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2340,
        740
      ],
      "parameters": {
        "color": 7,
        "width": 446,
        "height": 253,
        "content": "## 4. Using AI to Extract Voice Characteristics and Traits\n[Read more about the Information Extractor node](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.information-extractor/)\n\nSecond, we'll use AI to analysis the brand voice characteristics of the previous articles. This picks out the tone, style and choice of language used and identifies them into categories. These categories will be used as guidelines for the AI to keep the future article consistent in tone and voice. "
      },
      "typeVersion": 1
    },
    {
      "id": "71fe32a9-1b8a-446c-a4ff-fb98c6a68e1b",
      "name": "Sticky Note4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2720,
        0
      ],
      "parameters": {
        "color": 7,
        "width": 626,
        "height": 633,
        "content": "## 5. Automate On-Brand Articles Using AI\n[Read more about the Information Extractor node](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.information-extractor)\n\nFinally with this approach, we can feed both content and voice guidelines into our final LLM - our content generation agent - to produce any number of on-brand articles, social media posts etc.\n\nWhen it comes to assessing the output, note the AI does a pretty good job at simulating format and reusing common phrases and wording for the target article. However, this could become repetitive very quickly! Whilst AI can help speed up the process, a human touch may still be required to add a some variety."
      },
      "typeVersion": 1
    },
    {
      "id": "4e6fbe4e-869e-4bef-99ba-7b18740caecf",
      "name": "Content Generation Agent",
      "type": "@n8n/n8n-nodes-langchain.informationExtractor",
      "position": [
        3000,
        320
      ],
      "parameters": {
        "text": "={{ $json.instruction }}",
        "options": {
          "systemPromptTemplate": "=You are a blog content writer who writes using the following article guidelines. Write a content piece as requested by the user. Output the body as Markdown. Do not include the date of the article because the publishing date is not determined yet.\n\n## Brand Article Style\n{{ $('Article Style & Brand Voice').item.json.text }}\n\n##n Brand Voice Characteristics\n\nHere are the brand voice characteristic and examples you must adopt in your piece. Pick only the characteristic which make sense for the user's request. Try to keep it as similar as possible but don't copy word for word.\n\n|characteristic|description|examples|\n|-|-|-|\n{{\n$('Article Style & Brand Voice').item.json.output.map(item => (\n`|${item.characteristic}|${item.description}|${item.examples.map(ex => `\"${ex}\"`).join(', ')}|`\n)).join('\\n')\n}}"
        },
        "attributes": {
          "attributes": [
            {
              "name": "title",
              "required": true,
              "description": "title of article"
            },
            {
              "name": "summary",
              "required": true,
              "description": "summary of article"
            },
            {
              "name": "body",
              "required": true,
              "description": "body of article"
            },
            {
              "name": "characteristics",
              "required": true,
              "description": "comma delimited string of characteristics chosen"
            }
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "id": "022de44c-c06c-41ac-bd50-38173dae9b37",
      "name": "Sticky Note6",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        3460,
        480
      ],
      "parameters": {
        "color": 7,
        "width": 406,
        "height": 173,
        "content": "## 6. Save Draft to Wordpress\n[Learn more about the Wordpress node](https://docs.n8n.io/integrations/builtin/app-nodes/n8n-nodes-base.wordpress/)\n\nTo close out the template, we'll simple save our generated article as a draft which could allow human team members to review and validate the article before publishing."
      },
      "typeVersion": 1
    },
    {
      "id": "fe54c40e-6ddd-45d6-a938-f467e4af3f57",
      "name": "Sticky Note5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2900,
        660
      ],
      "parameters": {
        "color": 5,
        "width": 440,
        "height": 120,
        "content": "### Q. Do I need to analyse Brand Voice for every article?\nA. No! I would recommend storing the results of the AI's analysis and re-use for a list of planned articles rather than generate anew every time."
      },
      "typeVersion": 1
    },
    {
      "id": "1832131e-21e8-44fc-9370-907f7b5a6eda",
      "name": "Sticky Note7",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1000,
        680
      ],
      "parameters": {
        "color": 5,
        "width": 380,
        "height": 120,
        "content": "### Q. Can I use other media than blog articles?\nA. Yes! This approach can use other source materials such as PDFs, as long as they can be produces in a text format to give to the LLM."
      },
      "typeVersion": 1
    },
    {
      "id": "8e8706a3-122d-436b-9206-de7a6b2f3c39",
      "name": "Sticky Note8",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -220,
        -120
      ],
      "parameters": {
        "width": 400,
        "height": 800,
        "content": "## Try It Out!\n### This n8n template demonstrates how to use AI to generate new on-brand written content by analysing previously published content.\n\nWith such an approach, it's possible to generate a steady stream of blog article drafts quickly with high consistency with your brand and existing content.\n\n### How it works\n* In this demonstration, the n8n.io blog is used as the source of existing published content and 5 of the latest articles are imported via the HTTP node.\n* The HTML node is extract the article  bodies which are then converted to markdown for our LLMs.\n* We use LLM nodes to (1) understand the article structure and writing style and (2) identify the brand voice characteristics used in the posts.\n* These are then used as guidelines in our final LLM node when generating new articles.\n* Finally, a draft is saved to Wordpress for human editors to review or use as starting point for their own articles.\n\n### How to use\n* Update Step 1 to fetch data from your desired blog or change to fetch existing content in a different way.\n* Update Step 5 to provide your new article instruction. For optimal output, theme topics relevant to your brand.\n\n\n### Need Help?\nJoin the [Discord](https://discord.com/invite/XPKeKXeB7d) or ask in the [Forum](https://community.n8n.io/)!\n\nHappy Hacking!"
      },
      "typeVersion": 1
    },
    {
      "id": "1510782d-0f88-40ca-99a8-44f984022c8e",
      "name": "New Article Instruction",
      "type": "n8n-nodes-base.set",
      "position": [
        2820,
        320
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "2c7e2a28-30f9-4533-a394-a5e967ebf4ec",
              "name": "instruction",
              "type": "string",
              "value": "=Write a comprehensive guide on using AI for document classification and document extraction. Explain the benefits of using vision models over traditional OCR. Close out with a recommendation of using n8n as the preferred way to get started with this AI use-case."
            }
          ]
        }
      },
      "typeVersion": 3.4
    }
  ],
  "pinData": {},
  "connections": {
    "Get Blog": {
      "main": [
        [
          {
            "node": "Extract Article URLs",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Markdown": {
      "main": [
        [
          {
            "node": "Combine Articles",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Get Article": {
      "main": [
        [
          {
            "node": "Extract Article Content",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Split Out URLs": {
      "main": [
        [
          {
            "node": "Latest Articles",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Latest Articles": {
      "main": [
        [
          {
            "node": "Get Article",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Combine Articles": {
      "main": [
        [
          {
            "node": "Capture Existing Article Structure",
            "type": "main",
            "index": 0
          },
          {
            "node": "Extract Voice Characteristics",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "OpenAI Chat Model": {
      "ai_languageModel": [
        [
          {
            "node": "Extract Voice Characteristics",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "OpenAI Chat Model1": {
      "ai_languageModel": [
        [
          {
            "node": "Content Generation Agent",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "OpenAI Chat Model2": {
      "ai_languageModel": [
        [
          {
            "node": "Capture Existing Article Structure",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "Extract Article URLs": {
      "main": [
        [
          {
            "node": "Split Out URLs",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Extract Article Content": {
      "main": [
        [
          {
            "node": "Markdown",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "New Article Instruction": {
      "main": [
        [
          {
            "node": "Content Generation Agent",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Content Generation Agent": {
      "main": [
        [
          {
            "node": "Save as Draft",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Article Style & Brand Voice": {
      "main": [
        [
          {
            "node": "New Article Instruction",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Extract Voice Characteristics": {
      "main": [
        [
          {
            "node": "Article Style & Brand Voice",
            "type": "main",
            "index": 1
          }
        ]
      ]
    },
    "When clicking ‘Test workflow’": {
      "main": [
        [
          {
            "node": "Get Blog",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Capture Existing Article Structure": {
      "main": [
        [
          {
            "node": "Article Style & Brand Voice",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}

Workflow n8n WordPress, contenu, génération d'articles : pour qui est ce workflow ?

Ce workflow s'adresse aux équipes marketing, aux rédacteurs de contenu et aux gestionnaires de blogs au sein des entreprises de taille petite à moyenne. Il est particulièrement utile pour ceux qui cherchent à automatiser la création de contenu sans nécessiter de compétences techniques avancées.

Workflow n8n WordPress, contenu, génération d'articles : problème résolu

Ce workflow résout le problème de la création de contenu chronophage en automatisant le processus de génération d'articles. Il élimine les frustrations liées à la recherche d'idées et à la rédaction, permettant aux utilisateurs de produire rapidement des articles de qualité. En réduisant le temps consacré à la création de contenu, les entreprises peuvent se concentrer sur d'autres aspects stratégiques de leur marketing.

Workflow n8n WordPress, contenu, génération d'articles : étapes du workflow

Étape 1 : Le processus commence par un déclencheur manuel qui permet à l'utilisateur de tester le workflow.

  • Étape 1 : Plusieurs modèles de langage OpenAI sont utilisés pour générer du contenu basé sur des instructions spécifiques.
  • Étape 2 : Les dernières publications sont récupérées via des requêtes HTTP.
  • Étape 3 : Les URLs des articles sont extraites et analysées.
  • Étape 4 : Le contenu des articles est ensuite combiné et structuré selon le style de la marque.
  • Étape 5 : Enfin, les articles sont enregistrés en tant que brouillons sur WordPress.

Workflow n8n WordPress, contenu, génération d'articles : guide de personnalisation

Pour personnaliser ce workflow, vous pouvez modifier les paramètres des nœuds OpenAI pour adapter le ton et le style du contenu généré. Il est également possible de changer l'URL de la requête HTTP pour récupérer des articles d'autres sources. Assurez-vous d'ajuster les paramètres d'enregistrement sur WordPress, comme le titre et les champs supplémentaires, pour correspondre à votre stratégie de contenu. Enfin, vous pouvez intégrer d'autres outils ou services n8n pour enrichir le flux selon vos besoins spécifiques.