Workflow n8n

Automatisation Google Sheets avec n8n : export de données en temps réel

Ce workflow n8n a pour objectif d'automatiser l'extraction et l'exportation de données depuis des plateformes d'avis, comme TrustPilot, vers Google Sheets. Dans un contexte où les entreprises cherchent à optimiser leur gestion des avis clients, ce workflow s'avère particulièrement utile pour les équipes marketing et de gestion de la relation client. Il permet de centraliser les avis en un seul endroit, facilitant ainsi leur analyse et leur exploitation.

  • Étape 1 : le workflow est déclenché manuellement via un bouton 'Test workflow'.
  • Étape 2 : les avis sont extraits à l'aide d'une requête HTTP vers TrustPilot, puis traités pour en extraire les informations pertinentes.
  • Étape 3 : les avis sont ensuite segmentés et filtrés pour ne conserver que ceux ayant un certain nombre de points.
  • Étape 4 : les données sont préparées pour l'exportation et envoyées vers Google Sheets, où elles sont organisées pour une consultation facile. Ce processus réduit considérablement le temps consacré à la collecte manuelle des avis et minimise le risque d'erreurs humaines. En intégrant ce workflow, les entreprises peuvent non seulement gagner en efficacité, mais également améliorer leur réactivité face aux retours clients, renforçant ainsi leur image de marque et leur relation client.
Tags clés :automatisationGoogle Sheetsavis clientsn8nextraction de données
Catégorie: Manual · Tags: automatisation, Google Sheets, avis clients, n8n, extraction de données0

Workflow n8n Google Sheets, avis clients, extraction de données : vue d'ensemble

Schéma des nœuds et connexions de ce workflow n8n, généré à partir du JSON n8n.

Workflow n8n Google Sheets, avis clients, extraction de données : détail des nœuds

  • When clicking ‘Test workflow’

    Déclenche le workflow lorsque l'utilisateur clique sur 'Test workflow'.

  • Zip Entries

    Crée une archive à partir des entrées spécifiées.

  • Extract Reviews

    Extrait des avis à partir de contenu HTML selon les valeurs d'extraction définies.

  • Reviews to List

    Divise les avis en une liste basée sur un champ spécifié.

  • Default Data Loader

    Charge des données par défaut à partir d'un document selon les options fournies.

  • Recursive Character Text Splitter

    Divise le texte en morceaux récursifs selon une taille de morceau définie.

  • Embeddings OpenAI

    Génère des embeddings à l'aide du modèle OpenAI spécifié.

  • Set Variables

    Définit des variables selon les options et les affectations fournies.

  • Get Payload of Points

    Effectue une requête HTTP pour obtenir la charge utile des points.

  • Clusters To List

    Divise les clusters en une liste basée sur un champ spécifié.

  • OpenAI Chat Model

    Utilise le modèle de chat OpenAI pour générer des réponses.

  • Only Clusters With 3+ points

    Filtre les clusters pour ne garder que ceux ayant 3 points ou plus.

  • Set Variables1

    Définit des variables supplémentaires selon les options et les affectations fournies.

  • Find Reviews

    Effectue une requête HTTP pour trouver des avis.

  • Prep Output For Export

    Prépare la sortie pour l'exportation selon les options spécifiées.

  • Export To Sheets

    Exporte les données vers Google Sheets selon les colonnes et options fournies.

  • Clear Existing Reviews

    Efface les avis existants via une requête HTTP.

  • Trigger Insights

    Déclenche un autre workflow pour obtenir des insights.

  • Prep Values For Trigger

    Prépare les valeurs pour le déclenchement d'un workflow.

  • Execute Workflow Trigger

    Déclenche un workflow à partir d'un événement.

  • Sticky Note

    Crée une note autocollante avec les paramètres spécifiés.

  • Sticky Note1

    Crée une note autocollante avec les paramètres spécifiés.

  • Get TrustPilot Page

    Effectue une requête HTTP pour obtenir la page TrustPilot.

  • Sticky Note2

    Crée une note autocollante avec les paramètres spécifiés.

  • Qdrant Vector Store

    Gère un magasin de vecteurs Qdrant selon les options fournies.

  • Sticky Note3

    Crée une note autocollante avec les paramètres spécifiés.

  • Sticky Note4

    Crée une note autocollante avec les paramètres spécifiés.

  • Sticky Note5

    Crée une note autocollante avec les paramètres spécifiés.

  • Sticky Note7

    Crée une note autocollante avec les paramètres spécifiés.

  • Sticky Note8

    Crée une note autocollante avec les paramètres spécifiés.

  • Sticky Note6

    Crée une note autocollante avec les paramètres spécifiés.

  • Sticky Note9

    Crée une note autocollante avec les paramètres spécifiés.

  • Apply K-means Clustering Algorithm

    Applique l'algorithme de clustering K-means sur les données fournies.

  • Sticky Note10

    Crée une note autocollante avec les paramètres spécifiés.

  • Customer Insights Agent

    Extrait des informations des clients à partir du texte fourni.

  • Sticky Note12

    Crée une note autocollante avec les paramètres spécifiés.

  • Sticky Note11

    Crée une note autocollante avec les paramètres spécifiés.

Inscris-toi pour voir l'intégralité du workflow

Inscription gratuite

S'inscrire gratuitementBesoin d'aide ?
{
  "meta": {
    "instanceId": "408f9fb9940c3cb18ffdef0e0150fe342d6e655c3a9fac21f0f644e8bedabcd9"
  },
  "nodes": [
    {
      "id": "63501cc8-77c9-4037-9f70-da23b6d20b03",
      "name": "When clicking ‘Test workflow’",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        280,
        440
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "00de989c-d9e9-4b42-b5db-7097800a6017",
      "name": "Zip Entries",
      "type": "n8n-nodes-base.set",
      "position": [
        1380,
        360
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "833a554d-2b39-4160-9348-18b17b28ce30",
              "name": "data",
              "type": "array",
              "value": "={{ \n $json.review_author.map((review_author, idx) => ({\n review_author,\n review_author_reviews_count: $json.review_author_reviews_count[idx].replace(' reviews', '').toInt(),\n review_country: $json.review_country[idx],\n review_date: $json.review_date[idx].toDate(),\n review_date_of_experience: $json.review_date_of_experience[idx].replace('Date of experience: ', '').toDate(),\n review_rating: $json.review_rating[idx].toInt(),\n review_text: $json.review_text[idx],\n review_title: $json.review_title[idx],\n review_url: $('Get TrustPilot Page').params.url.match(/https:\\/\\/[^/]+/) + $json.review_url[idx],\n }))\n}}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "9290e116-c001-49d5-ae4c-d91cd246f2c2",
      "name": "Extract Reviews",
      "type": "n8n-nodes-base.html",
      "position": [
        1140,
        520
      ],
      "parameters": {
        "options": {
          "trimValues": true
        },
        "operation": "extractHtmlContent",
        "extractionValues": {
          "values": [
            {
              "key": "review_author",
              "cssSelector": "[data-service-review-card-paper] [data-consumer-name-typography]",
              "returnArray": true
            },
            {
              "key": "review_rating",
              "attribute": "data-service-review-rating",
              "cssSelector": "[data-service-review-rating]",
              "returnArray": true,
              "returnValue": "attribute"
            },
            {
              "key": "review_title",
              "cssSelector": "[data-service-review-title-typography]",
              "returnArray": true
            },
            {
              "key": "review_text",
              "cssSelector": "[data-service-review-text-typography]",
              "returnArray": true
            },
            {
              "key": "review_date_of_experience",
              "cssSelector": "[data-service-review-date-of-experience-typography]",
              "returnArray": true
            },
            {
              "key": "review_date",
              "attribute": "datetime",
              "cssSelector": "[data-service-review-date-time-ago]",
              "returnArray": true,
              "returnValue": "attribute"
            },
            {
              "key": "review_country",
              "cssSelector": "[data-consumer-country-typography]",
              "returnArray": true
            },
            {
              "key": "review_author_reviews_count",
              "cssSelector": "[data-consumer-reviews-count-typography]",
              "returnArray": true
            },
            {
              "key": "review_url",
              "attribute": "href",
              "cssSelector": "a[data-review-title-typography]",
              "returnArray": true,
              "returnValue": "attribute"
            }
          ]
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "4aa3e50d-fcce-48a7-8237-c12f8592f69e",
      "name": "Reviews to List",
      "type": "n8n-nodes-base.splitOut",
      "position": [
        1380,
        520
      ],
      "parameters": {
        "options": {},
        "fieldToSplitOut": "data"
      },
      "typeVersion": 1
    },
    {
      "id": "a6b9abf9-a17a-4f30-9f90-6183770c4933",
      "name": "Default Data Loader",
      "type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
      "position": [
        1980,
        520
      ],
      "parameters": {
        "options": {
          "metadata": {
            "metadataValues": [
              {
                "name": "review_author",
                "value": "={{ $json.review_author }}"
              },
              {
                "name": "review_author_reviews_count",
                "value": "={{ $json.review_author_reviews_count }}"
              },
              {
                "name": "review_country",
                "value": "={{ $json.review_country }}"
              },
              {
                "name": "review_date",
                "value": "={{ $json.review_date }}"
              },
              {
                "name": "review_date_of_experience",
                "value": "={{ $json.review_date_of_experience }}"
              },
              {
                "name": "review_rating",
                "value": "={{ $json.review_rating }}"
              },
              {
                "name": "review_date_month",
                "value": "={{ $json.review_date.toDateTime().format('M') }}"
              },
              {
                "name": "review_date_year",
                "value": "={{ $json.review_date.toDateTime().format('yyyy') }}"
              },
              {
                "name": "review_date_of_experience_month",
                "value": "={{ $json.review_date_of_experience.toDateTime().format('M') }}"
              },
              {
                "name": "review_date_of_experience_year",
                "value": "={{ $json.review_date_of_experience.toDateTime().format('yyyy') }}"
              },
              {
                "name": "company_id",
                "value": "={{ $('Set Variables').item.json.companyId }}"
              },
              {
                "name": "review_url",
                "value": "={{ $json.review_url }}"
              }
            ]
          }
        },
        "jsonData": "={{ $json.review_title }}\n{{ $json.review_text }}",
        "jsonMode": "expressionData"
      },
      "typeVersion": 1
    },
    {
      "id": "afd8907c-9a59-4dcc-94c5-2114fb2a7d5d",
      "name": "Recursive Character Text Splitter",
      "type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
      "position": [
        1980,
        660
      ],
      "parameters": {
        "options": {},
        "chunkSize": 4000
      },
      "typeVersion": 1
    },
    {
      "id": "e22d92b8-e8e9-42aa-9d02-2e70234f11ed",
      "name": "Embeddings OpenAI",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        1860,
        520
      ],
      "parameters": {
        "model": "text-embedding-3-small",
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "8gccIjcuf3gvaoEr",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "f0ea6b63-c96d-4b3f-8a21-d0f2dbb4efc3",
      "name": "Set Variables",
      "type": "n8n-nodes-base.set",
      "position": [
        520,
        440
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "2e58a9fa-a14d-4a6c-8cc8-8ec947c791fb",
              "name": "companyId",
              "type": "string",
              "value": "www.freddiesflowers.com"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "0188986f-fbe9-4c06-892a-3cb71b52a309",
      "name": "Get Payload of Points",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        1740,
        1120
      ],
      "parameters": {
        "url": "=http://qdrant:6333/collections/trustpilot_reviews/points",
        "method": "POST",
        "options": {},
        "jsonBody": "={{\n {\n \"ids\": $json.points,\n \"with_payload\": true\n }\n}}",
        "sendBody": true,
        "specifyBody": "json",
        "authentication": "predefinedCredentialType",
        "nodeCredentialType": "qdrantApi"
      },
      "credentials": {
        "qdrantApi": {
          "id": "NyinAS3Pgfik66w5",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "5fc6e0b6-507f-4cfd-951b-be3709b86ac2",
      "name": "Clusters To List",
      "type": "n8n-nodes-base.splitOut",
      "position": [
        1480,
        1120
      ],
      "parameters": {
        "options": {},
        "fieldToSplitOut": "output"
      },
      "typeVersion": 1
    },
    {
      "id": "f21369b9-1dd5-4b35-a1f3-00fd67794051",
      "name": "OpenAI Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        2140,
        1340
      ],
      "parameters": {
        "model": "gpt-4o-mini",
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "8gccIjcuf3gvaoEr",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "b0075699-6513-4781-b5de-81d1ab81dfe1",
      "name": "Only Clusters With 3+ points",
      "type": "n8n-nodes-base.filter",
      "position": [
        1480,
        1300
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "and",
          "conditions": [
            {
              "id": "328f806c-0792-4d90-9bee-a1e10049e78f",
              "operator": {
                "type": "array",
                "operation": "lengthGt",
                "rightType": "number"
              },
              "leftValue": "={{ $json.points }}",
              "rightValue": 2
            }
          ]
        }
      },
      "typeVersion": 2
    },
    {
      "id": "f6a6209c-d269-4238-8e92-230df7b41df9",
      "name": "Set Variables1",
      "type": "n8n-nodes-base.set",
      "position": [
        519,
        1220
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "2e58a9fa-a14d-4a6c-8cc8-8ec947c791fb",
              "name": "companyId",
              "type": "string",
              "value": "={{ $json.companyId }}"
            },
            {
              "id": "37cf8af2-6f0f-40b1-b822-c9bd6a620a3c",
              "name": "review_date_from",
              "type": "string",
              "value": "={{ $today.startOf('month').toISO() }}"
            },
            {
              "id": "8d72f739-f832-4c25-b62a-2ae70ad2b1e7",
              "name": "review_date_to",
              "type": "string",
              "value": "={{ $today.endOf('month').toISO() }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "85cb48b1-0ab9-4f88-88f3-82fcfb041ebe",
      "name": "Find Reviews",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        896,
        1160
      ],
      "parameters": {
        "url": "=http://qdrant:6333/collections/trustpilot_reviews/points/scroll",
        "method": "POST",
        "options": {},
        "jsonBody": "={\n \"limit\": 500,\n \"filter\":{\n \"must\": [\n {\n \"key\": \"metadata.company_id\",\n \"match\": { \"value\": \"{{ $('Set Variables1').item.json.companyId }}\" }\n },\n {\n \"key\": \"metadata.review_date\",\n \"range\": {\n \"gte\": \"{{ $('Set Variables1').item.json.review_date_from }}\",\n \"gt\": null,\n \"lt\": null,\n \"lte\": \"{{ $('Set Variables1').item.json.review_date_to }}\"\n }\n }\n ]\n },\n \"with_vector\":true\n}",
        "sendBody": true,
        "specifyBody": "json",
        "authentication": "predefinedCredentialType",
        "nodeCredentialType": "qdrantApi"
      },
      "credentials": {
        "qdrantApi": {
          "id": "NyinAS3Pgfik66w5",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "69bbd197-c78f-4dae-9300-fe23d4d49855",
      "name": "Prep Output For Export",
      "type": "n8n-nodes-base.set",
      "position": [
        2720,
        1203
      ],
      "parameters": {
        "mode": "raw",
        "options": {},
        "jsonOutput": "={{ {\n ...$json.output,\n \"CompanyID\": $('Set Variables1').item.json.companyId,\n \"From\": $('Set Variables1').item.json.review_date_from,\n \"To\": $('Set Variables1').item.json.review_date_to,\n \"Number of Responses\": $('Get Payload of Points').item.json.result.length,\n \"Raw Responses\": $('Get Payload of Points').item.json.result.map(item =>\n [\n item.payload.metadata.review_date,\n item.payload.metadata.review_author,\n item.payload.metadata.review_rating,\n item.payload.content.replaceAll('\"', '\\\"').replaceAll('\\n', ' '),\n item.payload.metadata.review_url,\n ]\n ).join('\\n')\n} }}\n"
      },
      "typeVersion": 3.4
    },
    {
      "id": "d77daa23-6acf-4daa-bf4c-33da4d05a54c",
      "name": "Export To Sheets",
      "type": "n8n-nodes-base.googleSheets",
      "position": [
        2940,
        1203
      ],
      "parameters": {
        "columns": {
          "value": {},
          "schema": [
            {
              "id": "CompanyID",
              "type": "string",
              "display": true,
              "removed": false,
              "required": false,
              "displayName": "CompanyID",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "From",
              "type": "string",
              "display": true,
              "removed": false,
              "required": false,
              "displayName": "From",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "To",
              "type": "string",
              "display": true,
              "removed": false,
              "required": false,
              "displayName": "To",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Insight",
              "type": "string",
              "display": true,
              "removed": false,
              "required": false,
              "displayName": "Insight",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Sentiment",
              "type": "string",
              "display": true,
              "removed": false,
              "required": false,
              "displayName": "Sentiment",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Suggested Improvements",
              "type": "string",
              "display": true,
              "removed": false,
              "required": false,
              "displayName": "Suggested Improvements",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Number of Responses",
              "type": "string",
              "display": true,
              "removed": false,
              "required": false,
              "displayName": "Number of Responses",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Raw Responses",
              "type": "string",
              "display": true,
              "removed": false,
              "required": false,
              "displayName": "Raw Responses",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            }
          ],
          "mappingMode": "autoMapInputData",
          "matchingColumns": []
        },
        "options": {},
        "operation": "append",
        "sheetName": {
          "__rl": true,
          "mode": "name",
          "value": "=Sheet1"
        },
        "documentId": {
          "__rl": true,
          "mode": "id",
          "value": "=1wAwWCcIZod00IGtxwTbTgjIRbKHu3Yl9wYWJ8GeT2Os"
        }
      },
      "credentials": {
        "googleSheetsOAuth2Api": {
          "id": "XHvC7jIRR8A2TlUl",
          "name": "Google Sheets account"
        }
      },
      "typeVersion": 4.4
    },
    {
      "id": "1f60c3a5-a47a-4313-9b29-8ea652d573f7",
      "name": "Clear Existing Reviews",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        760,
        440
      ],
      "parameters": {
        "url": "http://qdrant:6333/collections/trustpilot_reviews/points/delete",
        "method": "POST",
        "options": {},
        "jsonBody": "={\n \"filter\": {\n \"must\": [\n {\n \"key\": \"metadata.company_id\",\n \"match\": {\n \"value\": \"{{ $('Set Variables').item.json.companyId }}\"\n }\n }\n ]\n }\n}",
        "sendBody": true,
        "specifyBody": "json",
        "authentication": "predefinedCredentialType",
        "nodeCredentialType": "qdrantApi"
      },
      "credentials": {
        "qdrantApi": {
          "id": "NyinAS3Pgfik66w5",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "61c3117c-757c-45dd-b9d5-1122b793be30",
      "name": "Trigger Insights",
      "type": "n8n-nodes-base.executeWorkflow",
      "position": [
        2660,
        440
      ],
      "parameters": {
        "options": {},
        "workflowId": "={{ $workflow.id }}"
      },
      "typeVersion": 1
    },
    {
      "id": "d3c6e81f-34bb-4be9-b869-2c219b87c4fb",
      "name": "Prep Values For Trigger",
      "type": "n8n-nodes-base.set",
      "position": [
        2460,
        440
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "24dd90ad-390f-444e-ba6c-8c06a41e836e",
              "name": "companyId",
              "type": "string",
              "value": "={{ $('Set Variables').item.json.companyId }}"
            }
          ]
        }
      },
      "executeOnce": true,
      "typeVersion": 3.4
    },
    {
      "id": "64af9cc7-a194-4427-ba78-d9a1136b962f",
      "name": "Execute Workflow Trigger",
      "type": "n8n-nodes-base.executeWorkflowTrigger",
      "position": [
        316,
        1220
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "7b6ba502-36c2-41e6-9d67-781d0d40a569",
      "name": "Sticky Note",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        186.9455564469605,
        263.2301011325764
      ],
      "parameters": {
        "color": 7,
        "width": 787.3314861380661,
        "height": 465.52420584035275,
        "content": "## Step 1. Starting Fresh\nFor this demo, we'll clear any existing records in our Qdrant vector store for the selected company. We do this using the Qdrant's delete points API."
      },
      "typeVersion": 1
    },
    {
      "id": "a99389d4-8ea6-4379-b725-f30e92b0d29e",
      "name": "Sticky Note1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1006.3778510483207,
        148.50042906971555
      ],
      "parameters": {
        "color": 7,
        "width": 638.5221986278162,
        "height": 580.2538779032135,
        "content": "## Step 2. Scraping TrustPilot For Company Reviews\n[Read more about HTTP Request Node](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.httprequest/)\n\nWe'll scrape at the most recent 3 pages of reviews for illustrative purposes but we could easily scrape them all if required. The HTML node offers a convenient way to extract data from the returned html pages and using it, we'll retrieve all the reviews data."
      },
      "typeVersion": 1
    },
    {
      "id": "139ccadd-9135-4681-b2eb-403b8d8bd710",
      "name": "Get TrustPilot Page",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        1140,
        360
      ],
      "parameters": {
        "url": "=https://uk.trustpilot.com/review/{{ $('Set Variables').item.json.companyId }}?sort=recency",
        "options": {
          "pagination": {
            "pagination": {
              "parameters": {
                "parameters": [
                  {
                    "name": "page",
                    "value": "={{ $pageCount + 1 }}"
                  }
                ]
              },
              "maxRequests": 3,
              "limitPagesFetched": true
            }
          }
        }
      },
      "executeOnce": false,
      "typeVersion": 4.2
    },
    {
      "id": "1c71db65-713b-4c31-9c11-5ff678fb327a",
      "name": "Sticky Note2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1680,
        140
      ],
      "parameters": {
        "color": 7,
        "width": 638.5221986278162,
        "height": 689.8000993522735,
        "content": "## Step 3. Store Reviews in Qdrant\n[Learn more about the Qdrant Vector Store](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreqdrant/)\n\nVector databases are a great way to store data if you're interested in perform similiarity searches which applies here as we want to group similar reviews to find patterns. Qdrant is a powerful vector database and tool of choice because of its robust API implementation and advanced filtering capabilities."
      },
      "typeVersion": 1
    },
    {
      "id": "a4f82a1b-5a76-46b6-a7a3-84ab09b46699",
      "name": "Qdrant Vector Store",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
      "position": [
        1860,
        360
      ],
      "parameters": {
        "mode": "insert",
        "options": {},
        "qdrantCollection": {
          "__rl": true,
          "mode": "id",
          "value": "=trustpilot_reviews"
        }
      },
      "credentials": {
        "qdrantApi": {
          "id": "NyinAS3Pgfik66w5",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "cbad9e73-c5b3-474c-95ef-7269addc4e62",
      "name": "Sticky Note3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        216,
        1000
      ],
      "parameters": {
        "color": 7,
        "width": 543.4265511994403,
        "height": 453.31956386852846,
        "content": "## Step 5. The Insight Subworkflow\n[Learn more about Workflow Triggers](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.executeworkflowtrigger)\n\nThis subworkflow takes the companyId to find the relevant records in our Qdrant vector store. It also takes a \"from\" and \"to\" date to scope the insights to a particular range - doing this we can say something like \"we only want insights for the past month of reviews\". "
      },
      "typeVersion": 1
    },
    {
      "id": "9c530716-63f4-4368-8d0e-0cdbe8f5b08e",
      "name": "Sticky Note4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        780,
        920
      ],
      "parameters": {
        "color": 7,
        "width": 557.7420442679241,
        "height": 526.2781960611934,
        "content": "## Step 6. Apply Clustering Algorithm to Reviews\n[Read more about using Python in n8n](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.code)\n\nWe'll retrieve our vectors embeddings for the desired company reviews and perform an advanced clustering algorithm on them. This powerful echnique allows us to quickly group similar embeddings into clusters which we can then use to discover popular feedback, opinions and pain-points!"
      },
      "typeVersion": 1
    },
    {
      "id": "9790b3a5-cc7c-4e12-8038-fc661c8226f8",
      "name": "Sticky Note5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1360,
        920
      ],
      "parameters": {
        "color": 7,
        "width": 598.5585287222906,
        "height": 605.9905193915599,
        "content": "## Step 7. Fetch Reviews By Cluster\n[Learn more about using the Code Node](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.code/)\n\nWith the Qdrant point IDs grouped and returned by our code node, all that's left is to fetch the payload of each. Note that the clustering algorithm isn't perfect and may require some tweaking depending on your data."
      },
      "typeVersion": 1
    },
    {
      "id": "267057b6-9727-4a45-9d87-5429da42f48e",
      "name": "Sticky Note7",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1980,
        969
      ],
      "parameters": {
        "color": 7,
        "width": 587.6069484146701,
        "height": 552.9535170892194,
        "content": "## Step 8. Getting Insights from Grouped Reviews\n[Read more about using Information Extractor Node](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.information-extractor)\n\nNext, we'll use our state-of-the-art LLM to generate insights on our reviews. Doing it this way, we'll able to pull more granular results addressing many key topics within the reviews."
      },
      "typeVersion": 1
    },
    {
      "id": "b8cc07d0-ffa3-425f-ae74-76dcb68fa88f",
      "name": "Sticky Note8",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2600,
        980
      ],
      "parameters": {
        "color": 7,
        "width": 572.5638733479158,
        "height": 464.4019616956416,
        "content": "## Step 9. Write To Insights Sheet\nFinally, our completed insights to appended to the Insights Sheet we created earlier in the workflow.\n\nYou can find a sample sheet here: https://docs.google.com/spreadsheets/d/e/2PACX-1vQ6ipJnXWXgr5wlUJnhioNpeYrxaIpsRYZCwN3C-fFXumkbh9TAsA_JzE0kbv7DcGAVIP7az0L46_2P/pubhtml"
      },
      "typeVersion": 1
    },
    {
      "id": "0dac0854-7106-44e3-bd68-fad7b201a6bc",
      "name": "Sticky Note6",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2340,
        240
      ],
      "parameters": {
        "color": 7,
        "width": 519.6419932444072,
        "height": 429.11782776909047,
        "content": "## Step 4. Trigger Insights SubWorkflow\n[Learn more about Workflow Triggers](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.executeworkflow)\n\nA subworkflow is used to trigger the analysis for the survey. This separation is optional but used here to better demonstrate the two part process."
      },
      "typeVersion": 1
    },
    {
      "id": "4aa7e73e-c29d-41df-b2f8-a62109285ccb",
      "name": "Sticky Note9",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        460,
        380
      ],
      "parameters": {
        "width": 226.36363118160727,
        "height": 327.0249036433755,
        "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n### 🚨 Set company here!\nTrustpilot must recognise it as part of the url."
      },
      "typeVersion": 1
    },
    {
      "id": "4d895cf9-452c-401e-a6f3-b9d3a359a96d",
      "name": "Apply K-means Clustering Algorithm",
      "type": "n8n-nodes-base.code",
      "position": [
        1116,
        1160
      ],
      "parameters": {
        "language": "python",
        "pythonCode": "import numpy as np\nfrom sklearn.cluster import KMeans\n\n# get vectors for all answers\npoint_ids = [item.id for item in _input.first().json.result.points]\nvectors = [item.vector.to_py() for item in _input.first().json.result.points]\nvectors_array = np.array(vectors)\n\n# apply k-means clustering where n_clusters = 5\n# this is a max and we'll discard some of these clusters later\nkmeans = KMeans(n_clusters=min(len(vectors), 5), random_state=42).fit(vectors_array)\nlabels = kmeans.labels_\nunique_labels = set(labels)\n\n# Extract and print points in each cluster\nclusters = {}\nfor label in set(labels):\n clusters[label] = vectors_array[labels == label]\n\n# return Qdrant point ids for each cluster\n# we'll use these ids to fetch the payloads from the vector store.\noutput = []\nfor cluster_id, cluster_points in clusters.items():\n points = [point_ids[i] for i in range(len(labels)) if labels[i] == cluster_id]\n output.append({\n \"id\": f\"Cluster {cluster_id}\",\n \"total\": len(cluster_points),\n \"points\": points\n })\n\nreturn {\"json\": {\"output\": output } }"
      },
      "typeVersion": 2
    },
    {
      "id": "95c57019-d9d7-4d9f-93dd-21d3d9708861",
      "name": "Sticky Note10",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -260,
        40
      ],
      "parameters": {
        "width": 400.381109509268,
        "height": 612.855812336249,
        "content": "## Try It Out!\n\n### This workflow generates highly-detailed customer insights from Trustpilot reviews. Works best when dealing with a large number of reviews.\n\n* Import Trustpilot reviews and vectorise in Qdrant vectorstore.\n* Identify clusters of popular topics in reviews using K-means clustering algorithm. \n* Each valid cluster is analysed and summarised by LLM.\n* Export LLM response and cluster results back into sheet.\n\nCheck out the reference google sheet here: https://docs.google.com/spreadsheets/d/e/2PACX-1vQ6ipJnXWXgr5wlUJnhioNpeYrxaIpsRYZCwN3C-fFXumkbh9TAsA_JzE0kbv7DcGAVIP7az0L46_2P/pubhtml\n\n### Need Help?\nJoin the [Discord](https://discord.com/invite/XPKeKXeB7d) or ask in the [Forum](https://community.n8n.io/)!\n\nHappy Hacking!"
      },
      "typeVersion": 1
    },
    {
      "id": "9bba9480-792e-48e3-ad9f-8809ce3aba09",
      "name": "Customer Insights Agent",
      "type": "@n8n/n8n-nodes-langchain.informationExtractor",
      "position": [
        2140,
        1180
      ],
      "parameters": {
        "text": "=The {{ $json.result.length }} reviews were:\n{{\n$json.result.map(item =>\n`* ${item.payload.metadata.review_author} gave ${item.payload.metadata.review_rating} stars: \"${item.payload.content.replaceAll('\"', '\\\"').replaceAll('\\n', ' ')}\"`\n).join('\\n')\n}}",
        "options": {
          "systemPromptTemplate": "=You help summarise a selection of trustpilot reviews for a company called \"{{ $json.result[0].payload.metadata.company_id }}\".\nThe {{ $json.result.length }} reviews were selected because their contents were similar in context.\n\nYour task is to: \n* summarise the given reviews into a short paragraph. Provide an insight from this summary and what we could learn from the reviews.\n* determine if the overall sentiment of all the listed responses to be either strongly negative, negative, neutral, positive or strongly positive."
        },
        "schemaType": "fromJson",
        "jsonSchemaExample": "{\n\t\"Insight\": \"\",\n \"Sentiment\": \"\",\n \"Suggested Improvements\": \"\"\n}"
      },
      "typeVersion": 1
    },
    {
      "id": "4488deb9-27f6-4f9d-b17e-9b5e7a1bba33",
      "name": "Sticky Note12",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        180,
        760
      ],
      "parameters": {
        "color": 5,
        "width": 323.2987132716669,
        "height": 80,
        "content": "### Run this once! \nIf for any reason you need to run more than once, be sure to clear the existing data first."
      },
      "typeVersion": 1
    },
    {
      "id": "5cb3bd73-1e77-4eba-9d2e-634fdc374330",
      "name": "Sticky Note11",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        780,
        1480
      ],
      "parameters": {
        "color": 5,
        "width": 323.2987132716669,
        "height": 110.05160146874424,
        "content": "### First Time Running?\nThere is a slight delay on first run because the code node has to download the required packages."
      },
      "typeVersion": 1
    }
  ],
  "pinData": {},
  "connections": {
    "Zip Entries": {
      "main": [
        [
          {
            "node": "Reviews to List",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Find Reviews": {
      "main": [
        [
          {
            "node": "Apply K-means Clustering Algorithm",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Set Variables": {
      "main": [
        [
          {
            "node": "Clear Existing Reviews",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Set Variables1": {
      "main": [
        [
          {
            "node": "Find Reviews",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Extract Reviews": {
      "main": [
        [
          {
            "node": "Zip Entries",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Reviews to List": {
      "main": [
        [
          {
            "node": "Qdrant Vector Store",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Clusters To List": {
      "main": [
        [
          {
            "node": "Only Clusters With 3+ points",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Embeddings OpenAI": {
      "ai_embedding": [
        [
          {
            "node": "Qdrant Vector Store",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "OpenAI Chat Model": {
      "ai_languageModel": [
        [
          {
            "node": "Customer Insights Agent",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "Default Data Loader": {
      "ai_document": [
        [
          {
            "node": "Qdrant Vector Store",
            "type": "ai_document",
            "index": 0
          }
        ]
      ]
    },
    "Get TrustPilot Page": {
      "main": [
        [
          {
            "node": "Extract Reviews",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Qdrant Vector Store": {
      "main": [
        [
          {
            "node": "Prep Values For Trigger",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Get Payload of Points": {
      "main": [
        [
          {
            "node": "Customer Insights Agent",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Clear Existing Reviews": {
      "main": [
        [
          {
            "node": "Get TrustPilot Page",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Prep Output For Export": {
      "main": [
        [
          {
            "node": "Export To Sheets",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Customer Insights Agent": {
      "main": [
        [
          {
            "node": "Prep Output For Export",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Prep Values For Trigger": {
      "main": [
        [
          {
            "node": "Trigger Insights",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Execute Workflow Trigger": {
      "main": [
        [
          {
            "node": "Set Variables1",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Only Clusters With 3+ points": {
      "main": [
        [
          {
            "node": "Get Payload of Points",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Recursive Character Text Splitter": {
      "ai_textSplitter": [
        [
          {
            "node": "Default Data Loader",
            "type": "ai_textSplitter",
            "index": 0
          }
        ]
      ]
    },
    "When clicking ‘Test workflow’": {
      "main": [
        [
          {
            "node": "Set Variables",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Apply K-means Clustering Algorithm": {
      "main": [
        [
          {
            "node": "Clusters To List",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}

Workflow n8n Google Sheets, avis clients, extraction de données : pour qui est ce workflow ?

Ce workflow s'adresse principalement aux équipes marketing et aux responsables de la relation client dans les entreprises de taille petite à moyenne. Il est conçu pour des utilisateurs ayant un niveau technique intermédiaire, familiarisés avec les outils d'automatisation et de gestion de données.

Workflow n8n Google Sheets, avis clients, extraction de données : problème résolu

Ce workflow résout le problème de la collecte manuelle des avis clients, qui peut être chronophage et sujet à des erreurs. En automatisant ce processus, les utilisateurs peuvent réduire le temps passé à rassembler ces informations, tout en garantissant leur précision. Cela permet également d'améliorer la réactivité des équipes face aux retours clients, ce qui est essentiel pour maintenir une bonne réputation en ligne.

Workflow n8n Google Sheets, avis clients, extraction de données : étapes du workflow

Étape 1 : le workflow est déclenché manuellement.

  • Étape 1 : les avis sont extraits de TrustPilot via une requête HTTP.
  • Étape 2 : les avis sont filtrés pour ne garder que ceux ayant 3 points ou plus.
  • Étape 3 : les données sont préparées pour l'exportation.
  • Étape 4 : les avis sont exportés vers Google Sheets pour une consultation facile.

Workflow n8n Google Sheets, avis clients, extraction de données : guide de personnalisation

Pour personnaliser ce workflow, vous pouvez modifier l'URL de la requête HTTP pour pointer vers d'autres sources d'avis si nécessaire. Il est également possible d'ajuster les critères de filtrage des avis en fonction de vos besoins. Assurez-vous de configurer correctement les paramètres de votre feuille Google pour recevoir les données. Si vous souhaitez intégrer d'autres outils, n'hésitez pas à ajouter des noeuds supplémentaires dans n8n. Pour sécuriser le flux, vérifiez les paramètres d'authentification de vos requêtes HTTP.