Automatisation Google Drive avec n8n : traitement d'images avancé
Ce workflow n8n a pour objectif d'automatiser le traitement d'images stockées sur Google Drive. Idéal pour les équipes marketing et de création de contenu, il permet de récupérer des images, d'analyser leurs couleurs, de les redimensionner et d'extraire des mots-clés pertinents. Grâce à cette automatisation n8n, vous pouvez gagner un temps précieux tout en améliorant la qualité de vos visuels. Le processus commence par un déclencheur manuel, permettant à l'utilisateur de lancer le workflow à tout moment. Ensuite, l'image est récupérée depuis Google Drive, suivie d'une analyse des couleurs pour obtenir des informations détaillées. L'étape suivante consiste à redimensionner l'image selon les spécifications souhaitées. Par la suite, le workflow utilise des nœuds d'embeddings d'OpenAI pour enrichir le contenu avec des mots-clés générés automatiquement. Enfin, les résultats sont combinés et stockés dans des notes autocollantes pour une visualisation facile. En intégrant cette automatisation dans votre flux de travail, vous réduisez les risques d'erreurs manuelles et améliorez l'efficacité de votre processus créatif, tout en garantissant une cohérence dans la gestion de vos ressources visuelles.
Workflow n8n Google Drive, traitement d'images, marketing : vue d'ensemble
Schéma des nœuds et connexions de ce workflow n8n, généré à partir du JSON n8n.
Workflow n8n Google Drive, traitement d'images, marketing : détail des nœuds
Inscris-toi pour voir l'intégralité du workflow
Inscription gratuite
S'inscrire gratuitementBesoin d'aide ?{
"meta": {
"instanceId": "408f9fb9940c3cb18ffdef0e0150fe342d6e655c3a9fac21f0f644e8bedabcd9",
"templateCredsSetupCompleted": true
},
"nodes": [
{
"id": "141638a4-b340-473f-a800-be7dbdcff131",
"name": "When clicking \"Test workflow\"",
"type": "n8n-nodes-base.manualTrigger",
"position": [
695,
380
],
"parameters": {},
"typeVersion": 1
},
{
"id": "6ccdaca5-f620-4afa-bed6-92f3a450687d",
"name": "Google Drive",
"type": "n8n-nodes-base.googleDrive",
"position": [
875,
380
],
"parameters": {
"fileId": {
"__rl": true,
"mode": "list",
"value": "0B43u2YYOTJR2cC1BRkptZ3N4QTk4NEtxRko5cjhKUUFyemw0",
"cachedResultUrl": "https://drive.google.com/file/d/0B43u2YYOTJR2cC1BRkptZ3N4QTk4NEtxRko5cjhKUUFyemw0/view?usp=drivesdk&resourcekey=0-UJ8EfTMMBRNVyBb6KhN2Tg",
"cachedResultName": "0B0A0255.jpeg"
},
"options": {},
"operation": "download"
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "yOwz41gMQclOadgu",
"name": "Google Drive account"
}
},
"typeVersion": 3
},
{
"id": "b0c2f7a4-a336-4705-aeda-411f2518aaef",
"name": "Get Color Information",
"type": "n8n-nodes-base.editImage",
"position": [
1200,
200
],
"parameters": {
"operation": "information"
},
"typeVersion": 1
},
{
"id": "3e42b3f1-6900-4622-8c0d-2d9a27a7e1c9",
"name": "Resize Image",
"type": "n8n-nodes-base.editImage",
"position": [
1200,
580
],
"parameters": {
"width": 512,
"height": 512,
"options": {},
"operation": "resize",
"resizeOption": "onlyIfLarger"
},
"typeVersion": 1
},
{
"id": "00425bb2-289e-4a09-8fcb-52319281483c",
"name": "Default Data Loader",
"type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
"position": [
2300,
380
],
"parameters": {
"options": {
"metadata": {
"metadataValues": [
{
"name": "source",
"value": "={{ $('Document for Embedding').item.json.metadata.source }}"
},
{
"name": "format",
"value": "={{ $('Document for Embedding').item.json.metadata.format }}"
},
{
"name": "backgroundColor",
"value": "={{ $('Document for Embedding').item.json.metadata.backgroundColor }}"
}
]
}
}
},
"typeVersion": 1
},
{
"id": "06dbdf39-9d72-460e-a29c-1ae4e9f3552a",
"name": "Recursive Character Text Splitter",
"type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
"position": [
2300,
500
],
"parameters": {
"options": {}
},
"typeVersion": 1
},
{
"id": "139cac42-c006-4c9d-8298-ade845e137a7",
"name": "Sticky Note",
"type": "n8n-nodes-base.stickyNote",
"position": [
1140,
100
],
"parameters": {
"color": 7,
"width": 372,
"height": 288,
"content": "### Get Color Channels\n[Source: https://www.pinecone.io/learn/series/image-search/color-histograms/](https://www.pinecone.io/learn/series/image-search/color-histograms/)"
},
"typeVersion": 1
},
{
"id": "9b8584ae-067c-4515-b194-32986ba3bf8b",
"name": "Sticky Note1",
"type": "n8n-nodes-base.stickyNote",
"position": [
1140,
418
],
"parameters": {
"color": 7,
"width": 376.4067897296865,
"height": 335.30166772984643,
"content": "### Generate Image Keywords\n[Source: https://www.pinecone.io/learn/series/image-search/bag-of-visual-words/](https://www.pinecone.io/learn/series/image-search/bag-of-visual-words/)\n\nNote, OpenAI Image models work best when image is resized to 512x512."
},
"typeVersion": 1
},
{
"id": "7f2c27d7-9947-42fa-aafb-78f4f95ac433",
"name": "Sticky Note2",
"type": "n8n-nodes-base.stickyNote",
"position": [
240,
540
],
"parameters": {
"color": 3,
"width": 359.1981770749933,
"height": 98.40143173756314,
"content": "⚠️ **Multimodal embedding is not designed analyze medical images for diagnostic features or disease patterns.** Please do not use Multimodal embedding for medical purposes."
},
"typeVersion": 1
},
{
"id": "cb6b4a82-db5f-41f0-94dc-6cfabe0905eb",
"name": "Combine Image Analysis",
"type": "n8n-nodes-base.merge",
"position": [
1700,
260
],
"parameters": {
"mode": "combine",
"options": {},
"combinationMode": "mergeByPosition"
},
"typeVersion": 2.1
},
{
"id": "1ba33665-3ebb-4b23-989d-eec53dfd225a",
"name": "Document for Embedding",
"type": "n8n-nodes-base.set",
"position": [
1860,
257
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "8204b731-24e2-4993-9e6d-4cea80393580",
"name": "data",
"type": "string",
"value": "=## keywords\\n\n{{ $json.content }}\\n\n## color information:\\n\n{{ JSON.stringify($json[\"Channel Statistics\"]) }}"
},
{
"id": "ca49cccf-ea4e-4362-bf49-ac836c8758d3",
"name": "metadata",
"type": "object",
"value": "={ \"format\": \"{{ $json.format }}\", \"backgroundColor\": \"{{ $json[\"Background Color\"] }}\", \"source\": \"{{ $binary.data.fileName }}\" } "
}
]
}
},
"typeVersion": 3.3
},
{
"id": "5d01a2fd-0190-48fc-b588-d5872c5cd793",
"name": "Sticky Note3",
"type": "n8n-nodes-base.stickyNote",
"position": [
640,
250.0169327052916
],
"parameters": {
"color": 7,
"width": 418.6907913057789,
"height": 316.7698949693208,
"content": "## 1. Get the Source Image\nIn this demo, we just need an image file. We'll pull an image from google drive but you can use all input trigger or source you prefer."
},
"typeVersion": 1
},
{
"id": "4c9825f3-6a2b-4fd2-bdb1-e49f8d947e7a",
"name": "Sticky Note4",
"type": "n8n-nodes-base.stickyNote",
"position": [
1098.439755647174,
-145.1609149026466
],
"parameters": {
"color": 7,
"width": 462.52060804115854,
"height": 938.3723985625845,
"content": "## 2. Image Embedding Methods\n[Read more about working with images in n8n](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.editimage)\n\nThere are a [myriad of image embedding techniques](https://www.pinecone.io/learn/series/image-search/) some which involve specialised models and some which do a simplified image-to-text representation.\nIn this demo, we'll use the simplified text representation methods: collecting color channel information and using Multimodal LLMs to produce keywords for the image. Together, these will form the document we'll embed to represent our image for search."
},
"typeVersion": 1
},
{
"id": "e4035987-16c0-4d03-9e20-5f2042a6a020",
"name": "Sticky Note5",
"type": "n8n-nodes-base.stickyNote",
"position": [
1600,
120
],
"parameters": {
"color": 7,
"width": 418.6907913057789,
"height": 343.6004071339855,
"content": "## 3. Generate Embedding Doc\nIt is important to define your metadata for later filtering and retrieval purposes.\n\n"
},
"typeVersion": 1
},
{
"id": "91fe4c5c-c063-48e2-b248-801c11880c69",
"name": "Sticky Note6",
"type": "n8n-nodes-base.stickyNote",
"position": [
2060,
-11.068945113406585
],
"parameters": {
"color": 7,
"width": 532.5269726975372,
"height": 665.9365418117011,
"content": "## 3. Store in Vector Store\n[Read more about vector stores](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreinmemory)\n\nOnce our document is ready, we can just insert into any vector store to make it ready for searching. When searching, be sure to defined the same vector store index used here!\nNote: Metadata is defined in the document loader which must be mapped manually.\n\n"
},
"typeVersion": 1
},
{
"id": "6e8ffa06-ddec-463a-b8d6-581ad7095398",
"name": "Embeddings OpenAI1",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
2680,
547
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "8gccIjcuf3gvaoEr",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "3dea73b2-6aa1-4158-945e-a5d6bea65244",
"name": "Sticky Note7",
"type": "n8n-nodes-base.stickyNote",
"position": [
2620,
200
],
"parameters": {
"color": 7,
"width": 400.96585774172854,
"height": 512.739000439197,
"content": "## 4. Try it out!\n[Read more about vector stores](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreinmemory)\n\nHere's a quick test to use a simple text prompt to search for the image. Next step would be to implement image-to-image search by using the \"Embedding Doc\" to search rather to store in the vector database.\n\n"
},
"typeVersion": 1
},
{
"id": "f6a543d4-df3b-456c-8f85-4dca29029b55",
"name": "Sticky Note8",
"type": "n8n-nodes-base.stickyNote",
"position": [
240,
140
],
"parameters": {
"width": 359.6648027457353,
"height": 384.6280362222034,
"content": "## Try It Out!\n### This workflow does the following:\n* Downloads a selected image from Google Drive.\n* Extracts colour channel information from the image.\n* Generates semantic keywords of the iamge using OpenAI vision model.\n* Combines extracted and generated data to create an embedding document for the image.\n* Inserts this document into a vector store to allow for vector search on the original image. \n\n### Need Help?\nJoin the [Discord](https://discord.com/invite/XPKeKXeB7d) or ask in the [Forum](https://community.n8n.io/)!\n\nHappy Hacking!"
},
"typeVersion": 1
},
{
"id": "724acae9-75d2-4421-b5a3-b920f7bda825",
"name": "In-Memory Vector Store",
"type": "@n8n/n8n-nodes-langchain.vectorStoreInMemory",
"position": [
2180,
200
],
"parameters": {
"mode": "insert",
"memoryKey": "image_embeddings"
},
"typeVersion": 1
},
{
"id": "52afd512-0d55-4ae3-9377-4cb324c571a8",
"name": "Embeddings OpenAI",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
2180,
420
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "8gccIjcuf3gvaoEr",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "c769f279-22ef-4cb1-aef3-9089bb92a0a4",
"name": "Search for Image",
"type": "@n8n/n8n-nodes-langchain.vectorStoreInMemory",
"position": [
2680,
387
],
"parameters": {
"mode": "load",
"prompt": "student having fun",
"memoryKey": "image_embeddings"
},
"typeVersion": 1
},
{
"id": "9aea3018-1377-4802-a5d0-509c221f4fc7",
"name": "Get Image Keywords",
"type": "@n8n/n8n-nodes-langchain.openAi",
"position": [
1360,
580
],
"parameters": {
"text": "Extract all possible semantic keywords which describe the image. Be comprehensive and be sure to identify subjects (if applicable) such as biological and non-biological objects, lightning, mood, tone, color, special effects, camera and/or techniques used if known. Respond with a comma-separated list.",
"modelId": {
"__rl": true,
"mode": "list",
"value": "gpt-4o",
"cachedResultName": "GPT-4O"
},
"options": {},
"resource": "image",
"inputType": "base64",
"operation": "analyze"
},
"credentials": {
"openAiApi": {
"id": "8gccIjcuf3gvaoEr",
"name": "OpenAi account"
}
},
"typeVersion": 1.8
}
],
"pinData": {},
"connections": {
"Google Drive": {
"main": [
[
{
"node": "Get Color Information",
"type": "main",
"index": 0
},
{
"node": "Resize Image",
"type": "main",
"index": 0
}
]
]
},
"Resize Image": {
"main": [
[
{
"node": "Get Image Keywords",
"type": "main",
"index": 0
}
]
]
},
"Embeddings OpenAI": {
"ai_embedding": [
[
{
"node": "In-Memory Vector Store",
"type": "ai_embedding",
"index": 0
}
]
]
},
"Embeddings OpenAI1": {
"ai_embedding": [
[
{
"node": "Search for Image",
"type": "ai_embedding",
"index": 0
}
]
]
},
"Get Image Keywords": {
"main": [
[
{
"node": "Combine Image Analysis",
"type": "main",
"index": 1
}
]
]
},
"Default Data Loader": {
"ai_document": [
[
{
"node": "In-Memory Vector Store",
"type": "ai_document",
"index": 0
}
]
]
},
"Get Color Information": {
"main": [
[
{
"node": "Combine Image Analysis",
"type": "main",
"index": 0
}
]
]
},
"Combine Image Analysis": {
"main": [
[
{
"node": "Document for Embedding",
"type": "main",
"index": 0
}
]
]
},
"Document for Embedding": {
"main": [
[
{
"node": "In-Memory Vector Store",
"type": "main",
"index": 0
}
]
]
},
"When clicking \"Test workflow\"": {
"main": [
[
{
"node": "Google Drive",
"type": "main",
"index": 0
}
]
]
},
"Recursive Character Text Splitter": {
"ai_textSplitter": [
[
{
"node": "Default Data Loader",
"type": "ai_textSplitter",
"index": 0
}
]
]
}
}
}Workflow n8n Google Drive, traitement d'images, marketing : pour qui est ce workflow ?
Ce workflow s'adresse aux équipes marketing, aux créateurs de contenu et aux professionnels du design qui souhaitent automatiser le traitement d'images. Il est adapté aux entreprises de toutes tailles, notamment celles qui utilisent Google Drive pour stocker leurs ressources visuelles.
Workflow n8n Google Drive, traitement d'images, marketing : problème résolu
Ce workflow résout le problème de la gestion manuelle des images, qui peut être chronophage et sujet à des erreurs. En automatisant le processus de récupération, d'analyse et de redimensionnement des images, les utilisateurs peuvent se concentrer sur des tâches à plus forte valeur ajoutée. Les résultats concrets incluent une meilleure organisation des ressources visuelles et une amélioration de la qualité des contenus créés.
Workflow n8n Google Drive, traitement d'images, marketing : étapes du workflow
Étape 1 : Le workflow est déclenché manuellement.
- Étape 1 : L'image est récupérée depuis Google Drive.
- Étape 2 : Les informations de couleur de l'image sont analysées.
- Étape 3 : L'image est redimensionnée selon les spécifications définies.
- Étape 4 : Des mots-clés sont générés à partir de l'image à l'aide d'OpenAI.
- Étape 5 : Les résultats sont combinés et stockés dans des notes autocollantes pour une consultation facile.
Workflow n8n Google Drive, traitement d'images, marketing : guide de personnalisation
Pour personnaliser ce workflow, vous pouvez modifier l'ID du fichier dans le nœud Google Drive pour pointer vers l'image souhaitée. Vous pouvez également ajuster les dimensions de redimensionnement dans le nœud Resize Image. Si vous souhaitez intégrer d'autres outils, envisagez d'ajouter des nœuds supplémentaires pour des analyses plus poussées ou des intégrations avec des plateformes de gestion de contenu. Assurez-vous de sécuriser votre flux en vérifiant les autorisations d'accès à Google Drive et en surveillant les performances du workflow.