Automatisation Email avec n8n : gestion efficace des messages
Ce workflow n8n a pour objectif de simplifier la gestion des emails en intégrant des outils d'intelligence artificielle. Dans un contexte où la surcharge d'emails peut nuire à la productivité, cette automatisation permet de lire, résumer et répondre aux messages de manière fluide. Les entreprises qui reçoivent un volume élevé de courriels, comme les agences de communication ou les équipes de support client, trouveront ce workflow particulièrement utile.
- Étape 1 : le déclencheur 'Email Trigger (IMAP)' permet de récupérer les nouveaux emails entrants.
- Étape 2 : le 'Email Summarization Chain' utilise l'IA pour résumer le contenu des messages, facilitant ainsi leur gestion.
- Étape 3 : le 'Text Classifier' aide à catégoriser les emails selon des critères définis, tandis que le 'Write email' génère des réponses automatiques basées sur les résumés.
- Étape 4 : l'intégration avec 'Gmail' permet d'envoyer les réponses directement. Grâce à cette automatisation n8n, les utilisateurs peuvent réduire le temps passé sur la gestion des emails, minimiser les risques d'erreurs humaines et améliorer la réactivité envers les clients. En somme, ce workflow représente une valeur ajoutée significative pour toute organisation cherchant à optimiser sa communication par email.
Workflow n8n email, productivité : vue d'ensemble
Schéma des nœuds et connexions de ce workflow n8n, généré à partir du JSON n8n.
Workflow n8n email, productivité : détail des nœuds
Inscris-toi pour voir l'intégralité du workflow
Inscription gratuite
S'inscrire gratuitementBesoin d'aide ?{
"id": "nkPjDxMrrkKbgHaV",
"meta": {
"instanceId": "a4bfc93e975ca233ac45ed7c9227d84cf5a2329310525917adaf3312e10d5462",
"templateCredsSetupCompleted": true
},
"name": "Effortless Email Management with AI",
"tags": [],
"nodes": [
{
"id": "9d77e26f-de2b-4bd4-b0f0-9924a8f459a6",
"name": "Email Trigger (IMAP)",
"type": "n8n-nodes-base.emailReadImap",
"position": [
-2000,
-180
],
"parameters": {
"options": {}
},
"credentials": {
"imap": {
"id": "k31W9oGddl9pMDy4",
"name": "IMAP info@n3witalia.com"
}
},
"typeVersion": 2
},
{
"id": "cf2d020b-b125-4a20-8694-8ed0f7acf755",
"name": "Markdown",
"type": "n8n-nodes-base.markdown",
"position": [
-1740,
-180
],
"parameters": {
"html": "={{ $json.textHtml }}",
"options": {}
},
"typeVersion": 1
},
{
"id": "41bfceff-0155-4643-be60-ee301e2d69e1",
"name": "Send Email",
"type": "n8n-nodes-base.emailSend",
"position": [
400,
-320
],
"webhookId": "a79ae1b4-648c-4cb4-b6cd-04ea3c1d9314",
"parameters": {
"html": "={{ $('Edit Fields').item.json.email }}",
"options": {},
"subject": "=Re: {{ $('Email Trigger (IMAP)').item.json.subject }}",
"toEmail": "={{ $('Email Trigger (IMAP)').item.json.from }}",
"fromEmail": "={{ $('Email Trigger (IMAP)').item.json.to }}"
},
"credentials": {
"smtp": {
"id": "hRjP3XbDiIQqvi7x",
"name": "SMTP info@n3witalia.com"
}
},
"typeVersion": 2.1
},
{
"id": "2aff581a-8b64-405c-b62f-74bf189fd7b1",
"name": "Qdrant Vector Store",
"type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
"position": [
-320,
600
],
"parameters": {
"mode": "retrieve-as-tool",
"options": {},
"toolName": "company_knowladge_base",
"toolDescription": "Extracts information regarding the request made.",
"qdrantCollection": {
"__rl": true,
"mode": "id",
"value": "=COLLECTION"
},
"includeDocumentMetadata": false
},
"credentials": {
"qdrantApi": {
"id": "iyQ6MQiVaF3VMBmt",
"name": "QdrantApi account"
}
},
"typeVersion": 1
},
{
"id": "6e3f6df0-8924-47d9-855c-51205d19e86d",
"name": "Embeddings OpenAI",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
-440,
800
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "CDX6QM4gLYanh0P4",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "37ac411b-4a74-44d1-917e-b07d1c9ca221",
"name": "Email Summarization Chain",
"type": "@n8n/n8n-nodes-langchain.chainSummarization",
"position": [
-1480,
-180
],
"parameters": {
"options": {
"binaryDataKey": "={{ $json.data }}",
"summarizationMethodAndPrompts": {
"values": {
"prompt": "=Write a concise summary of the following in max 100 words:\n\n\"{{ $json.data }}\"\n\nDo not enter the total number of words used.",
"combineMapPrompt": "=Write a concise summary of the following in max 100 words:\n\n\"{{ $json.data }}\"\n\nDo not enter the total number of words used."
}
}
},
"operationMode": "nodeInputBinary"
},
"typeVersion": 2
},
{
"id": "91edbac9-847b-4f31-a8dd-09418bd93642",
"name": "Write email",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
-1040,
-180
],
"parameters": {
"text": "=Write the text to reply to the following email:\n\n{{ $json.response.text }}",
"options": {
"systemMessage": "You are an expert at answering emails. You need to answer them professionally based on the information you have. This is a business email. Be concise and never exceed 100 words. Only the body of the email, not create the subject"
},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 1.7
},
{
"id": "1da0e72a-db97-4216-a1a5-038cebaf7e10",
"name": "OpenAI",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
-180,
280
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4o-mini",
"cachedResultName": "gpt-4o-mini"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "CDX6QM4gLYanh0P4",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "af2d6284-4c8f-4a07-b689-d0f55aaabd26",
"name": "Gmail",
"type": "n8n-nodes-base.gmail",
"position": [
-300,
-180
],
"webhookId": "d6dd2e7c-90ea-4b65-9c64-523d2541a054",
"parameters": {
"sendTo": "info@n3w.it",
"message": "=<h3>MESSAGE</h3>\n{{ $('Email Trigger (IMAP)').item.json.textHtml }}\n\n<h3>AI RESPONSE</h3>\n{{ $json.email }}",
"options": {},
"subject": "=[Approval Required] {{ $('Email Trigger (IMAP)').item.json.subject }}",
"operation": "sendAndWait",
"responseType": "freeText"
},
"credentials": {
"gmailOAuth2": {
"id": "nyuHvSX5HuqfMPlW",
"name": "Gmail account (n3w.it)"
}
},
"typeVersion": 2.1
},
{
"id": "aaccc4a6-ce53-4813-8247-65bd1a9d5639",
"name": "Text Classifier",
"type": "@n8n/n8n-nodes-langchain.textClassifier",
"position": [
-60,
-180
],
"parameters": {
"options": {
"systemPromptTemplate": "Please classify the text provided by the user into one of the following categories: {categories}, and use the provided formatting instructions below. Don't explain, and only output the json."
},
"inputText": "={{ $json.data.text }}",
"categories": {
"categories": [
{
"category": "Approved",
"description": "The email has been reviewed and accepted as-is. The human explicitly or implicity express approva, indicating that no changes ar needed.\n\nExample:\n\"Ok\",\n\"Approvato\",\n\"Invia\""
},
{
"category": "Declined",
"description": "The email has been reviewd, but the human request modifications before it sent link tweaks, removing parts, rewording etc... This could include suggested edits, rewording or major revision."
}
]
}
},
"typeVersion": 1
},
{
"id": "b46de5d9-1a2e-4d28-930b-e18fb1d7876e",
"name": "Edit Fields",
"type": "n8n-nodes-base.set",
"position": [
-580,
-180
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "35d7c303-42f4-4dd1-b41e-6eb087c23c3d",
"name": "email",
"type": "string",
"value": "={{ $json.output }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "36ce51c6-8ee1-4230-84c0-40e259eafb1a",
"name": "When clicking ‘Test workflow’",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-1340,
-1300
],
"parameters": {},
"typeVersion": 1
},
{
"id": "21a0c991-65dc-483e-9b98-5cedaba7ae13",
"name": "Create collection",
"type": "n8n-nodes-base.httpRequest",
"position": [
-1040,
-1440
],
"parameters": {
"url": "https://QDRANTURL/collections/COLLECTION",
"method": "POST",
"options": {},
"jsonBody": "{\n \"filter\": {}\n}",
"sendBody": true,
"sendHeaders": true,
"specifyBody": "json",
"authentication": "genericCredentialType",
"genericAuthType": "httpHeaderAuth",
"headerParameters": {
"parameters": [
{
"name": "Content-Type",
"value": "application/json"
}
]
}
},
"credentials": {
"httpHeaderAuth": {
"id": "qhny6r5ql9wwotpn",
"name": "Qdrant API (Hetzner)"
}
},
"typeVersion": 4.2
},
{
"id": "9a048d7d-bcdf-40b7-b33a-94b811083eac",
"name": "Refresh collection",
"type": "n8n-nodes-base.httpRequest",
"position": [
-1040,
-1180
],
"parameters": {
"url": "https://QDRANTURL/collections/COLLECTION/points/delete",
"method": "POST",
"options": {},
"jsonBody": "{\n \"filter\": {}\n}",
"sendBody": true,
"sendHeaders": true,
"specifyBody": "json",
"authentication": "genericCredentialType",
"genericAuthType": "httpHeaderAuth",
"headerParameters": {
"parameters": [
{
"name": "Content-Type",
"value": "application/json"
}
]
}
},
"credentials": {
"httpHeaderAuth": {
"id": "qhny6r5ql9wwotpn",
"name": "Qdrant API (Hetzner)"
}
},
"typeVersion": 4.2
},
{
"id": "db494d2d-5390-4f83-9b87-3409fef31a7d",
"name": "Get folder",
"type": "n8n-nodes-base.googleDrive",
"position": [
-820,
-1180
],
"parameters": {
"filter": {
"driveId": {
"__rl": true,
"mode": "list",
"value": "My Drive",
"cachedResultUrl": "https://drive.google.com/drive/my-drive",
"cachedResultName": "My Drive"
},
"folderId": {
"__rl": true,
"mode": "id",
"value": "=test-whatsapp"
}
},
"options": {},
"resource": "fileFolder"
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "HEy5EuZkgPZVEa9w",
"name": "Google Drive account"
}
},
"typeVersion": 3
},
{
"id": "e30dbe6f-482e-47f9-b5b8-62c1113e6c8b",
"name": "Download Files",
"type": "n8n-nodes-base.googleDrive",
"position": [
-600,
-1180
],
"parameters": {
"fileId": {
"__rl": true,
"mode": "id",
"value": "={{ $json.id }}"
},
"options": {
"googleFileConversion": {
"conversion": {
"docsToFormat": "text/plain"
}
}
},
"operation": "download"
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "HEy5EuZkgPZVEa9w",
"name": "Google Drive account"
}
},
"typeVersion": 3
},
{
"id": "492d48d8-4997-4f04-902b-041da3210417",
"name": "Default Data Loader",
"type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
"position": [
-200,
-980
],
"parameters": {
"options": {},
"dataType": "binary"
},
"typeVersion": 1
},
{
"id": "0cf45d10-3cbf-4eb6-ab30-11f264b3aa8d",
"name": "Token Splitter",
"type": "@n8n/n8n-nodes-langchain.textSplitterTokenSplitter",
"position": [
-240,
-820
],
"parameters": {
"chunkSize": 300,
"chunkOverlap": 30
},
"typeVersion": 1
},
{
"id": "7d60f569-c34e-49a8-ba9a-88cf33083136",
"name": "Sticky Note3",
"type": "n8n-nodes-base.stickyNote",
"position": [
-840,
-1500
],
"parameters": {
"color": 6,
"width": 880,
"height": 220,
"content": "# STEP 1\n\n## Create Qdrant Collection\nChange:\n- QDRANTURL\n- COLLECTION"
},
"typeVersion": 1
},
{
"id": "e86b18c4-d7e8-4e81-b520-dbd8125edf38",
"name": "Sticky Note4",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1060,
-1240
],
"parameters": {
"color": 4,
"width": 620,
"height": 400,
"content": "# STEP 2\n\n\n\n\n\n\n\n\n\n\n\n\n## Documents vectorization with Qdrant and Google Drive\nChange:\n- QDRANTURL\n- COLLECTION"
},
"typeVersion": 1
},
{
"id": "05f65120-ef31-4c67-ac18-e68a8353909c",
"name": "Qdrant Vector Store1",
"type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
"position": [
-360,
-1180
],
"parameters": {
"mode": "insert",
"options": {},
"qdrantCollection": {
"__rl": true,
"mode": "id",
"value": "=COLLECTION"
}
},
"credentials": {
"qdrantApi": {
"id": "iyQ6MQiVaF3VMBmt",
"name": "QdrantApi account"
}
},
"typeVersion": 1
},
{
"id": "c15fd52f-b142-408e-af06-aeed10a1cf85",
"name": "Embeddings OpenAI1",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
-380,
-980
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "CDX6QM4gLYanh0P4",
"name": "OpenAi account"
}
},
"typeVersion": 1.1
},
{
"id": "3e47224f-3deb-450b-b825-f16c5f860f28",
"name": "Sticky Note",
"type": "n8n-nodes-base.stickyNote",
"position": [
-2020,
-600
],
"parameters": {
"color": 3,
"width": 580,
"height": 260,
"content": "# STEP 3 - MAIN FLOW\n\n\n## How it works\nThis workflow automates the handling of incoming emails, summarizes their content, generates appropriate responses using a retrieval-augmented generation (RAG) approach, and obtains approval or suggestions before sending replies. \n\nYou can quickly integrate Gmail and Outlook via the appropriate trigger nodes"
},
"typeVersion": 1
},
{
"id": "63097039-58cb-4e0f-9fb6-6bf868275519",
"name": "DeepSeek Chat Model",
"type": "@n8n/n8n-nodes-langchain.lmChatDeepSeek",
"position": [
-1560,
40
],
"parameters": {
"options": {}
},
"credentials": {
"deepSeekApi": {
"id": "sxh1rfZxonXV83hS",
"name": "DeepSeek account"
}
},
"typeVersion": 1
},
{
"id": "c86d6eeb-cf08-429f-b5b4-60b317071035",
"name": "Sticky Note2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1500,
-260
],
"parameters": {
"width": 320,
"height": 240,
"content": "Chain that summarizes the received email"
},
"typeVersion": 1
},
{
"id": "4afc8b00-d1e5-473c-a71e-1299c84c546e",
"name": "Sticky Note5",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1060,
-260
],
"parameters": {
"width": 340,
"height": 240,
"content": "Agent that retrieves business information from a vector database and processes the response"
},
"typeVersion": 1
},
{
"id": "be1762ff-729b-4b83-9139-16f835b748f2",
"name": "Sticky Note1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1800,
-260
],
"parameters": {
"height": 240,
"content": "Convert email to Markdown format for better understanding of LLM models"
},
"typeVersion": 1
},
{
"id": "f818ede7-895a-4860-91d3-f08cc32ec0e3",
"name": "Sticky Note6",
"type": "n8n-nodes-base.stickyNote",
"position": [
-380,
-380
],
"parameters": {
"color": 4,
"height": 360,
"content": "## IMPORTANT\n\nFor the \"Send Draft\" node, you need to send the draft email to a Gmail address because it is the only one that allows the \"Send and wait for response\" function."
},
"typeVersion": 1
},
{
"id": "929b525a-912b-4f7b-a6e7-dfeb88a446c8",
"name": "Sticky Note7",
"type": "n8n-nodes-base.stickyNote",
"position": [
-100,
-260
],
"parameters": {
"width": 360,
"height": 240,
"content": "Based on the suggestion received, the text classifier can understand whether the feedback received approves the generated email or not."
},
"typeVersion": 1
},
{
"id": "2468e643-013f-4925-ab35-c8ef4ee6eed2",
"name": "Email Reviewer",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
380,
-40
],
"parameters": {
"text": "=Review at the following email:\n{{ $('Edit Fields').item.json.email }}\n\nFeedback from human:\n{{ $json.data.text }}",
"options": {
"systemMessage": "If you are an expert in reviewing emails before sending them. You need to review and structure them in such a way that you can send them. It must be in HTML format and you can insert (if you think it is appropriate) only HTML characters such as <br>, <b>, <i>, <p> where necessary. Be concise and never exceed 100 words. Only the body of the email"
},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 1.7
},
{
"id": "ecd9d3f8-2e79-4e5f-a73d-48de60441376",
"name": "Sticky Note8",
"type": "n8n-nodes-base.stickyNote",
"position": [
340,
-120
],
"parameters": {
"width": 340,
"height": 220,
"content": "The Email Reviewer agent, taking inspiration from human feedback, rewrites the email"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "de11da52-1513-4797-8070-b64e84b84158",
"connections": {
"Gmail": {
"main": [
[
{
"node": "Text Classifier",
"type": "main",
"index": 0
}
]
]
},
"OpenAI": {
"ai_languageModel": [
[
{
"node": "Write email",
"type": "ai_languageModel",
"index": 0
},
{
"node": "Email Reviewer",
"type": "ai_languageModel",
"index": 0
},
{
"node": "Text Classifier",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Markdown": {
"main": [
[
{
"node": "Email Summarization Chain",
"type": "main",
"index": 0
}
]
]
},
"Get folder": {
"main": [
[
{
"node": "Download Files",
"type": "main",
"index": 0
}
]
]
},
"Edit Fields": {
"main": [
[
{
"node": "Gmail",
"type": "main",
"index": 0
}
]
]
},
"Write email": {
"main": [
[
{
"node": "Edit Fields",
"type": "main",
"index": 0
}
]
]
},
"Download Files": {
"main": [
[
{
"node": "Qdrant Vector Store1",
"type": "main",
"index": 0
}
]
]
},
"Email Reviewer": {
"main": [
[
{
"node": "Edit Fields",
"type": "main",
"index": 0
}
]
]
},
"Token Splitter": {
"ai_textSplitter": [
[
{
"node": "Default Data Loader",
"type": "ai_textSplitter",
"index": 0
}
]
]
},
"Text Classifier": {
"main": [
[
{
"node": "Send Email",
"type": "main",
"index": 0
}
],
[
{
"node": "Email Reviewer",
"type": "main",
"index": 0
}
]
]
},
"Embeddings OpenAI": {
"ai_embedding": [
[
{
"node": "Qdrant Vector Store",
"type": "ai_embedding",
"index": 0
}
]
]
},
"Embeddings OpenAI1": {
"ai_embedding": [
[
{
"node": "Qdrant Vector Store1",
"type": "ai_embedding",
"index": 0
}
]
]
},
"Refresh collection": {
"main": [
[
{
"node": "Get folder",
"type": "main",
"index": 0
}
]
]
},
"DeepSeek Chat Model": {
"ai_languageModel": [
[
{
"node": "Email Summarization Chain",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Default Data Loader": {
"ai_document": [
[
{
"node": "Qdrant Vector Store1",
"type": "ai_document",
"index": 0
}
]
]
},
"Qdrant Vector Store": {
"ai_tool": [
[
{
"node": "Write email",
"type": "ai_tool",
"index": 0
},
{
"node": "Email Reviewer",
"type": "ai_tool",
"index": 0
}
]
]
},
"Email Trigger (IMAP)": {
"main": [
[
{
"node": "Markdown",
"type": "main",
"index": 0
}
]
]
},
"Email Summarization Chain": {
"main": [
[
{
"node": "Write email",
"type": "main",
"index": 0
}
]
]
},
"When clicking ‘Test workflow’": {
"main": [
[
{
"node": "Create collection",
"type": "main",
"index": 0
},
{
"node": "Refresh collection",
"type": "main",
"index": 0
}
]
]
}
}
}Workflow n8n email, productivité : pour qui est ce workflow ?
Ce workflow s'adresse aux entreprises qui gèrent un volume important d'emails, telles que les agences de communication, les équipes de support client ou les professionnels du marketing. Un niveau technique intermédiaire est recommandé pour sa mise en place.
Workflow n8n email, productivité : problème résolu
Ce workflow résout le problème de la surcharge d'emails en automatisant leur gestion. Il élimine les frustrations liées à la lecture manuelle des messages et réduit le temps perdu à rédiger des réponses. En intégrant des outils d'IA, il permet également d'améliorer la qualité des réponses envoyées, réduisant ainsi le risque d'erreurs. Les utilisateurs bénéficient d'une gestion plus efficace de leur temps et d'une communication plus fluide avec leurs clients.
Workflow n8n email, productivité : étapes du workflow
Étape 1 : le workflow commence par le déclencheur 'Email Trigger (IMAP)' qui récupère les nouveaux emails.
- Étape 1 : les emails sont ensuite traités par le 'Email Summarization Chain' pour en extraire les points clés.
- Étape 2 : le 'Text Classifier' catégorise les emails selon des critères spécifiques.
- Étape 3 : le 'Write email' génère des réponses automatiques basées sur les résumés fournis.
- Étape 4 : les réponses sont envoyées via le noeud 'Gmail', permettant une communication rapide et efficace.
Workflow n8n email, productivité : guide de personnalisation
Pour personnaliser ce workflow, vous pouvez modifier les paramètres du noeud 'Email Trigger (IMAP)' pour spécifier le compte email à surveiller. Dans le noeud 'Text Classifier', ajustez les catégories selon vos besoins. Vous pouvez également personnaliser les réponses générées dans le noeud 'Write email' en modifiant le prompt utilisé. Enfin, assurez-vous que les paramètres de connexion pour le noeud 'Gmail' sont correctement configurés pour permettre l'envoi des emails.