Automatisation LinkedIn avec n8n : extraction de données en temps réel
- Ce workflow n8n permet d'automatiser l'extraction de données depuis LinkedIn en utilisant le serveur Bright Data MCP et le modèle Google Gemini. Il s'adresse aux professionnels du marketing, aux recruteurs et aux entreprises qui souhaitent collecter des informations sur des profils ou des entreprises sur LinkedIn de manière efficace et structurée. Grâce à cette automatisation n8n, les utilisateurs peuvent récupérer des données précises sans avoir à le faire manuellement, ce qui leur fait gagner un temps précieux et réduit les risques d'erreurs humaines.
- Le workflow commence par un déclencheur manuel qui initie le processus. Ensuite, il utilise plusieurs nœuds pour définir les URL à scraper et pour interagir avec le client Bright Data MCP afin d'extraire les informations des profils et des entreprises LinkedIn. Les nœuds 'Set the URLs' et 'Set the LinkedIn Company URL' permettent de spécifier les cibles de l'extraction. Les données sont ensuite traitées par le nœud 'LinkedIn Data Extractor' et enrichies via le modèle Google Gemini pour une analyse approfondie. Les résultats sont ensuite sauvegardés sur disque à l'aide des nœuds 'Write the LinkedIn person info to disk' et 'Write the LinkedIn company info to disk'.
- Les bénéfices de ce workflow sont nombreux : il facilite la collecte de données, améliore la précision des informations obtenues et permet aux utilisateurs de se concentrer sur des tâches à plus forte valeur ajoutée. En intégrant cette automatisation dans leur processus, les entreprises peuvent optimiser leur stratégie de recherche et d'engagement sur LinkedIn.
Workflow n8n LinkedIn, scraping, Bright Data, Google Gemini : vue d'ensemble
Schéma des nœuds et connexions de ce workflow n8n, généré à partir du JSON n8n.
Workflow n8n LinkedIn, scraping, Bright Data, Google Gemini : détail des nœuds
Inscris-toi pour voir l'intégralité du workflow
Inscription gratuite
S'inscrire gratuitementBesoin d'aide ?{
"id": "D2RkoPZlkKFRUrNu",
"meta": {
"instanceId": "885b4fb4a6a9c2cb5621429a7b972df0d05bb724c20ac7dac7171b62f1c7ef40",
"templateCredsSetupCompleted": true
},
"name": "LinkedIn Web Scraping with Bright Data MCP Server & Google Gemini",
"tags": [
{
"id": "ZOwtAMLepQaGW76t",
"name": "Building Blocks",
"createdAt": "2025-04-13T15:23:40.462Z",
"updatedAt": "2025-04-13T15:23:40.462Z"
},
{
"id": "ddPkw7Hg5dZhQu2w",
"name": "AI",
"createdAt": "2025-04-13T05:38:08.053Z",
"updatedAt": "2025-04-13T05:38:08.053Z"
}
],
"nodes": [
{
"id": "68715d64-ce99-4e23-81ed-fe8f7d08ebd7",
"name": "When clicking ‘Test workflow’",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-640,
-50
],
"parameters": {},
"typeVersion": 1
},
{
"id": "e0295397-2926-4964-8be5-c0341de29a02",
"name": "Sticky Note1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-260,
-420
],
"parameters": {
"color": 3,
"width": 440,
"height": 320,
"content": "## Bright Data LinkedIn Person Scraper"
},
"typeVersion": 1
},
{
"id": "cdf42164-569e-4140-9847-4751d69c6b7b",
"name": "Set the URLs",
"type": "n8n-nodes-base.set",
"position": [
-200,
-300
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "214e61a0-3587-453f-baf5-eac013990857",
"name": "url",
"type": "string",
"value": "https://www.linkedin.com/in/ranjan-dailata/"
},
{
"id": "45014942-0a2e-4f46-b395-f82f97bfa93e",
"name": "webhook_url",
"type": "string",
"value": "https://webhook.site/ce41e056-c097-48c8-a096-9b876d3abbf7"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "5769fce6-bcd7-4a13-b992-cd6d955a2cf1",
"name": "Bright Data MCP Client For LinkedIn Person",
"type": "n8n-nodes-mcp.mcpClient",
"notes": "Scrape a single webpage URL with advanced options for content extraction and get back the results in MarkDown language.",
"position": [
20,
-300
],
"parameters": {
"toolName": "web_data_linkedin_person_profile",
"operation": "executeTool",
"toolParameters": "={\n \"url\": \"{{ $json.url }}\"\n} "
},
"credentials": {
"mcpClientApi": {
"id": "JtatFSfA2kkwctYa",
"name": "MCP Client (STDIO) account"
}
},
"notesInFlow": true,
"typeVersion": 1
},
{
"id": "56e37aa6-9719-4879-80af-a10c091377fb",
"name": "Sticky Note",
"type": "n8n-nodes-base.stickyNote",
"position": [
-260,
-60
],
"parameters": {
"color": 4,
"width": 440,
"height": 320,
"content": "## Bright Data LinkedIn Company Scraper"
},
"typeVersion": 1
},
{
"id": "69afab25-32c6-4849-b2f9-4a2b25657c37",
"name": "List all tools for Bright Data",
"type": "n8n-nodes-mcp.mcpClient",
"position": [
-420,
50
],
"parameters": {},
"credentials": {
"mcpClientApi": {
"id": "JtatFSfA2kkwctYa",
"name": "MCP Client (STDIO) account"
}
},
"typeVersion": 1
},
{
"id": "feb16a2b-fdf7-49d4-bcd5-848ccaf66639",
"name": "Bright Data MCP Client For LinkedIn Company",
"type": "n8n-nodes-mcp.mcpClient",
"notes": "Scrape a single webpage URL with advanced options for content extraction and get back the results in MarkDown language.",
"position": [
20,
50
],
"parameters": {
"toolName": "web_data_linkedin_company_profile",
"operation": "executeTool",
"toolParameters": "={\n \"url\": \"{{ $json.url }}\"\n} "
},
"credentials": {
"mcpClientApi": {
"id": "JtatFSfA2kkwctYa",
"name": "MCP Client (STDIO) account"
}
},
"notesInFlow": true,
"typeVersion": 1
},
{
"id": "e5117eb1-a757-4c28-965e-87ea03213ed1",
"name": "Set the LinkedIn Company URL",
"type": "n8n-nodes-base.set",
"position": [
-200,
50
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "214e61a0-3587-453f-baf5-eac013990857",
"name": "url",
"type": "string",
"value": "https://www.linkedin.com/company/bright-data/"
},
{
"id": "45014942-0a2e-4f46-b395-f82f97bfa93e",
"name": "webhook_url",
"type": "string",
"value": "https://webhook.site/ce41e056-c097-48c8-a096-9b876d3abbf7"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "99f45d7f-ad79-4ffc-8299-c71bd870f8fb",
"name": "Webhook for LinkedIn Company Web Scraper",
"type": "n8n-nodes-base.httpRequest",
"position": [
1060,
40
],
"parameters": {
"url": "={{ $('Set the LinkedIn Company URL').item.json.webhook_url }}",
"options": {},
"jsonBody": "={\n \"about\": {{ JSON.stringify($json.about[0]) }},\n \"story\": {{ JSON.stringify($json.company_story[0]) }}\n}",
"sendBody": true,
"specifyBody": "json"
},
"typeVersion": 4.2
},
{
"id": "5dfd2630-17d9-4a13-8cd6-57a564ef4a26",
"name": "LinkedIn Data Extractor",
"type": "@n8n/n8n-nodes-langchain.informationExtractor",
"position": [
240,
200
],
"parameters": {
"text": "=Write a complete story of the provided company information in JSON. Use the following Company info to produce a story or a blog post. Make sure to incorporate all the provided company context.\n\nHere's the Company Info in JSON - {{ $json.input }}",
"options": {
"systemPromptTemplate": "You are an expert data formatter"
},
"attributes": {
"attributes": [
{
"name": "company_story",
"required": true,
"description": "Detailed Company Info"
}
]
}
},
"typeVersion": 1
},
{
"id": "d1927c08-5ded-4b0b-b60b-bed126040d38",
"name": "Google Gemini Chat Model",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
328,
420
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash-exp"
},
"credentials": {
"googlePalmApi": {
"id": "YeO7dHZnuGBVQKVZ",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "0de1d200-c35a-41df-b512-8b97b92f14db",
"name": "List all available tools for Bright Data",
"type": "n8n-nodes-mcp.mcpClient",
"position": [
-420,
-300
],
"parameters": {},
"credentials": {
"mcpClientApi": {
"id": "JtatFSfA2kkwctYa",
"name": "MCP Client (STDIO) account"
}
},
"typeVersion": 1
},
{
"id": "3f884694-b8f3-478a-b1a3-f46326a0c96f",
"name": "Code",
"type": "n8n-nodes-base.code",
"position": [
318,
-100
],
"parameters": {
"jsCode": "jsonContent = JSON.parse($input.first().json.result.content[0].text) \nreturn jsonContent\n"
},
"typeVersion": 2
},
{
"id": "67036198-4d7d-42d9-93cf-ffc65649bae0",
"name": "Merge",
"type": "n8n-nodes-base.merge",
"position": [
616,
50
],
"parameters": {},
"typeVersion": 3.1
},
{
"id": "77423290-bd08-4dc8-9f37-cf8fec9f6a63",
"name": "Aggregate",
"type": "n8n-nodes-base.aggregate",
"position": [
836,
50
],
"parameters": {
"options": {},
"fieldsToAggregate": {
"fieldToAggregate": [
{
"fieldToAggregate": "about"
},
{
"fieldToAggregate": "output.company_story"
}
]
}
},
"typeVersion": 1
},
{
"id": "91d25405-afb3-4ed6-b8fa-52ab64a654e2",
"name": "Create a binary data for LinkedIn person info extract",
"type": "n8n-nodes-base.function",
"position": [
320,
-500
],
"parameters": {
"functionCode": "items[0].binary = {\n data: {\n data: new Buffer(JSON.stringify(items[0].json, null, 2)).toString('base64')\n }\n};\nreturn items;"
},
"typeVersion": 1
},
{
"id": "3e74c49e-eb31-43b1-b8e1-ed960bd83ca1",
"name": "Write the LinkedIn person info to disk",
"type": "n8n-nodes-base.readWriteFile",
"position": [
520,
-500
],
"parameters": {
"options": {},
"fileName": "d:\\LinkedIn-Person.json",
"operation": "write"
},
"typeVersion": 1
},
{
"id": "f92b3505-2af6-42aa-bf4b-8b7b6cb97364",
"name": "Create a binary data for LinkedIn company info extract",
"type": "n8n-nodes-base.function",
"position": [
1000,
-180
],
"parameters": {
"functionCode": "items[0].binary = {\n data: {\n data: new Buffer(JSON.stringify(items[0].json, null, 2)).toString('base64')\n }\n};\nreturn items;"
},
"typeVersion": 1
},
{
"id": "6ed1402b-4858-4311-bede-f0b8f28acb9f",
"name": "Write the LinkedIn company info to disk",
"type": "n8n-nodes-base.readWriteFile",
"position": [
1220,
-180
],
"parameters": {
"options": {},
"fileName": "d:\\LinkedIn-Company.json",
"operation": "write"
},
"typeVersion": 1
},
{
"id": "335efc2b-80e3-4fac-b31f-82fff4ac4e65",
"name": "Webhook for LinkedIn Person Web Scraper",
"type": "n8n-nodes-base.httpRequest",
"position": [
318,
-300
],
"parameters": {
"url": "={{ $('Set the URLs').item.json.webhook_url }}",
"options": {},
"sendBody": true,
"bodyParameters": {
"parameters": [
{
"name": "response",
"value": "={{ $json.result.content[0].text }}"
}
]
}
},
"typeVersion": 4.2
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "35815900-1729-40c7-b128-778eabb62ec1",
"connections": {
"Code": {
"main": [
[
{
"node": "Merge",
"type": "main",
"index": 0
}
]
]
},
"Merge": {
"main": [
[
{
"node": "Aggregate",
"type": "main",
"index": 0
}
]
]
},
"Aggregate": {
"main": [
[
{
"node": "Webhook for LinkedIn Company Web Scraper",
"type": "main",
"index": 0
},
{
"node": "Create a binary data for LinkedIn company info extract",
"type": "main",
"index": 0
}
]
]
},
"Set the URLs": {
"main": [
[
{
"node": "Bright Data MCP Client For LinkedIn Person",
"type": "main",
"index": 0
}
]
]
},
"LinkedIn Data Extractor": {
"main": [
[
{
"node": "Merge",
"type": "main",
"index": 1
}
]
]
},
"Google Gemini Chat Model": {
"ai_languageModel": [
[
{
"node": "LinkedIn Data Extractor",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Set the LinkedIn Company URL": {
"main": [
[
{
"node": "Bright Data MCP Client For LinkedIn Company",
"type": "main",
"index": 0
}
]
]
},
"List all tools for Bright Data": {
"main": [
[
{
"node": "Set the LinkedIn Company URL",
"type": "main",
"index": 0
}
]
]
},
"When clicking ‘Test workflow’": {
"main": [
[
{
"node": "List all available tools for Bright Data",
"type": "main",
"index": 0
},
{
"node": "List all tools for Bright Data",
"type": "main",
"index": 0
}
]
]
},
"Webhook for LinkedIn Person Web Scraper": {
"main": [
[]
]
},
"List all available tools for Bright Data": {
"main": [
[
{
"node": "Set the URLs",
"type": "main",
"index": 0
}
]
]
},
"Bright Data MCP Client For LinkedIn Person": {
"main": [
[
{
"node": "Webhook for LinkedIn Person Web Scraper",
"type": "main",
"index": 0
},
{
"node": "Create a binary data for LinkedIn person info extract",
"type": "main",
"index": 0
}
]
]
},
"Bright Data MCP Client For LinkedIn Company": {
"main": [
[
{
"node": "Code",
"type": "main",
"index": 0
},
{
"node": "LinkedIn Data Extractor",
"type": "main",
"index": 0
}
]
]
},
"Create a binary data for LinkedIn person info extract": {
"main": [
[
{
"node": "Write the LinkedIn person info to disk",
"type": "main",
"index": 0
}
]
]
},
"Create a binary data for LinkedIn company info extract": {
"main": [
[
{
"node": "Write the LinkedIn company info to disk",
"type": "main",
"index": 0
}
]
]
}
}
}Workflow n8n LinkedIn, scraping, Bright Data, Google Gemini : pour qui est ce workflow ?
Ce workflow s'adresse principalement aux professionnels du marketing digital, aux recruteurs et aux entreprises souhaitant améliorer leur collecte de données sur LinkedIn. Il est adapté aux utilisateurs ayant un niveau technique intermédiaire, ainsi qu'aux équipes de taille petite à moyenne cherchant à automatiser leurs processus de recherche.
Workflow n8n LinkedIn, scraping, Bright Data, Google Gemini : problème résolu
Ce workflow résout le problème de la collecte manuelle de données sur LinkedIn, qui est souvent chronophage et sujette à des erreurs. En automatisant ce processus, les utilisateurs peuvent obtenir des informations précises et à jour sur des profils et des entreprises, tout en réduisant le risque d'erreurs humaines. Cela permet également d'accélérer le processus de recherche et d'analyse, offrant ainsi un avantage concurrentiel.
Workflow n8n LinkedIn, scraping, Bright Data, Google Gemini : étapes du workflow
Étape 1 : Le workflow est déclenché manuellement par l'utilisateur.
- Étape 1 : Les URL des profils et des entreprises LinkedIn à scraper sont définies à l'aide des nœuds 'Set the URLs' et 'Set the LinkedIn Company URL'.
- Étape 2 : Le client Bright Data MCP est utilisé pour extraire les données des profils et des entreprises via les nœuds 'Bright Data MCP Client For LinkedIn Person' et 'Bright Data MCP Client For LinkedIn Company'.
- Étape 3 : Les données extraites sont traitées par le nœud 'LinkedIn Data Extractor' et enrichies avec le modèle Google Gemini.
- Étape 4 : Les résultats sont sauvegardés sur disque grâce aux nœuds 'Write the LinkedIn person info to disk' et 'Write the LinkedIn company info to disk'.
Workflow n8n LinkedIn, scraping, Bright Data, Google Gemini : guide de personnalisation
Pour personnaliser ce workflow, les utilisateurs peuvent modifier les URL dans les nœuds 'Set the URLs' et 'Set the LinkedIn Company URL' pour cibler d'autres profils ou entreprises. Il est également possible d'ajuster les paramètres du client Bright Data MCP pour affiner les résultats de l'extraction. Les utilisateurs peuvent intégrer d'autres outils ou services en ajoutant des nœuds supplémentaires selon leurs besoins. Enfin, il est recommandé de surveiller le flux pour s'assurer que les données sont correctement extraites et enregistrées.