Automatisation Google Drive avec n8n : traitement de documents PDF
Ce workflow n8n a pour objectif d'automatiser le traitement de documents PDF et d'images en utilisant Google Drive et des modèles d'IA. Dans un contexte où les entreprises doivent gérer un volume croissant de documents, ce workflow permet de simplifier et d'accélérer les processus de traitement. Par exemple, il peut être utilisé pour extraire des informations financières à partir de relevés bancaires, convertir des fichiers PDF en images, et organiser ces données de manière efficace. Étape 1 : le workflow commence par un déclencheur manuel, permettant à l'utilisateur de lancer le processus à la demande. Étape 2 : il utilise le modèle Google Gemini pour analyser le contenu des documents. Étape 3 : les fichiers sont triés et les images sont extraites à partir des PDF. Étape 4 : les images sont redimensionnées pour une utilisation optimale dans des applications d'IA. Étape 5 : les notes autocollantes sont utilisées tout au long du processus pour ajouter des commentaires ou des instructions. Enfin, le workflow compile toutes les informations extraites et les transcrit au format Markdown pour une utilisation ultérieure. Grâce à cette automatisation n8n, les entreprises peuvent réduire le temps consacré à la gestion des documents, minimiser les erreurs humaines et améliorer la productivité globale. Tags clés : automatisation, Google Drive, traitement de documents.
Vue d'ensemble du workflow n8n
Schéma des nœuds et connexions de ce workflow n8n, généré à partir du JSON n8n.
Détail des nœuds du workflow n8n
Inscris-toi pour voir l'intégralité du workflow
Inscription gratuite
S'inscrire gratuitementBesoin d'aide ?{
"meta": {
"instanceId": "408f9fb9940c3cb18ffdef0e0150fe342d6e655c3a9fac21f0f644e8bedabcd9"
},
"nodes": [
{
"id": "490493d1-e9ac-458a-ac9e-a86048ce6169",
"name": "When clicking ‘Test workflow’",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-700,
260
],
"parameters": {},
"typeVersion": 1
},
{
"id": "116f1137-632f-4021-ad0f-cf59ed1776fd",
"name": "Google Gemini Chat Model",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
980,
440
],
"parameters": {
"options": {},
"modelName": "models/gemini-1.5-pro-latest"
},
"credentials": {
"googlePalmApi": {
"id": "dSxo6ns5wn658r8N",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "44695b4f-702c-4230-9ec3-e37447fed38e",
"name": "Sort Pages",
"type": "n8n-nodes-base.sort",
"position": [
400,
320
],
"parameters": {
"options": {},
"sortFieldsUi": {
"sortField": [
{
"fieldName": "fileName"
}
]
}
},
"typeVersion": 1
},
{
"id": "f2575b2c-0808-464e-b982-1eed8e0d9df7",
"name": "Sticky Note",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1280,
0
],
"parameters": {
"width": 437.0502325581392,
"height": 430.522325581395,
"content": "## Try Me Out!\n\n### This workflow converts a bank statement to markdown, faithfully capturing the details using the power of Vision Language Models (\"VLMs\"). The resulting markdown can then be parsed again by your standard LLM to extract data such as identifying all deposit table rows in the document.\n\nThis workflow is able to handle both downloaded PDFs as well as scanned PDFs. Be sure to protect sensitive data before running this workflow.\n\n### Need Help?\nJoin the [Discord](https://discord.com/invite/XPKeKXeB7d) or ask in the [Forum](https://community.n8n.io/)!"
},
"typeVersion": 1
},
{
"id": "d62d7b0e-29eb-48a9-a471-4279e663c521",
"name": "Get Bank Statement",
"type": "n8n-nodes-base.googleDrive",
"position": [
-500,
260
],
"parameters": {
"fileId": {
"__rl": true,
"mode": "id",
"value": "1wS9U7MQDthj57CvEcqG_Llkr-ek6RqGA"
},
"options": {},
"operation": "download"
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "yOwz41gMQclOadgu",
"name": "Google Drive account"
}
},
"typeVersion": 3
},
{
"id": "1329973b-a4e0-4272-9e24-3674bb9d4923",
"name": "Split PDF into Images",
"type": "n8n-nodes-base.httpRequest",
"position": [
-140,
320
],
"parameters": {
"url": "http://stirling-pdf:8080/api/v1/convert/pdf/img",
"method": "POST",
"options": {},
"sendBody": true,
"contentType": "multipart-form-data",
"bodyParameters": {
"parameters": [
{
"name": "fileInput",
"parameterType": "formBinaryData",
"inputDataFieldName": "data"
},
{
"name": "imageFormat",
"value": "jpg"
},
{
"name": "singleOrMultiple",
"value": "multiple"
},
{
"name": "dpi",
"value": "300"
}
]
}
},
"typeVersion": 4.2
},
{
"id": "4e263346-9f55-4316-a505-4a54061ccfbb",
"name": "Extract Zip File",
"type": "n8n-nodes-base.compression",
"position": [
40,
320
],
"parameters": {},
"typeVersion": 1.1
},
{
"id": "5e97072f-a7c5-45aa-99d1-3231a9230b53",
"name": "Images To List",
"type": "n8n-nodes-base.code",
"position": [
220,
320
],
"parameters": {
"jsCode": "let results = [];\n\nfor (item of items) {\n for (key of Object.keys(item.binary)) {\n results.push({\n json: {\n fileName: item.binary[key].fileName\n },\n binary: {\n data: item.binary[key],\n }\n });\n }\n}\n\nreturn results;"
},
"typeVersion": 2
},
{
"id": "62836c73-4cf7-4225-a45d-0cd62b7e227d",
"name": "Resize Images For AI",
"type": "n8n-nodes-base.editImage",
"position": [
800,
280
],
"parameters": {
"width": 75,
"height": 75,
"options": {},
"operation": "resize",
"resizeOption": "percent"
},
"typeVersion": 1
},
{
"id": "59fc6716-9826-4463-be33-923a8f6f33f1",
"name": "Sticky Note1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-820,
0
],
"parameters": {
"color": 7,
"width": 546.4534883720931,
"height": 478.89348837209275,
"content": "## 1. Download Bank Statement PDF\n[Read more about Google Drive node](https://docs.n8n.io/integrations/builtin/app-nodes/n8n-nodes-base.googledrive)\n\nFor this demonstration, we'll pull an example bank statement off Google Drive however, you can also swap this out for other triggers such as webhook.\n\nYou can use the example bank statement created specifically for this workflow here: https://drive.google.com/file/d/1wS9U7MQDthj57CvEcqG_Llkr-ek6RqGA/view?usp=sharing"
},
"typeVersion": 1
},
{
"id": "8e68a295-ff35-4d28-86bb-c8ea5664b3c6",
"name": "Sticky Note2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-240,
3.173953488372149
],
"parameters": {
"color": 7,
"width": 848.0232558139535,
"height": 533.5469767441862,
"content": "## 2. Split PDF Pages into Seperate Images\n\nCurrently, the vision model we'll be using can't accept raw PDFs so we'll have to convert our PDF to a image in order to use it. To achieve this, we'll use the free [Stirling PDF webservice](https://stirlingpdf.io/) for convenience but if we need data privacy (recommended!), we could self-host our own [Stirling PDF instance](https://github.com/Stirling-Tools/Stirling-PDF/) instead. Alternatively, feel free to swap this service out for one of your own as long as it can convert PDFs into images!\n\nWe will ask the PDF service to return each page of our statement as separate images, which it does so as a zip file. Next steps is to just unzip the file and convert the output as a list of images."
},
"typeVersion": 1
},
{
"id": "5286aa35-9687-4d5b-987c-79322a1ddc84",
"name": "Sticky Note3",
"type": "n8n-nodes-base.stickyNote",
"position": [
640,
-40
],
"parameters": {
"color": 7,
"width": 775.3441860465115,
"height": 636.0809302325588,
"content": "## 3. Convert PDF Pages to Markdown Using Vision Model\n[Learn more about using the Basic LLM node](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainllm)\n\nUnlike traditional OCR, vision models (\"VLMs\") \"transcribe\" what they see so while we shouldn't expect an exact replication of a document, they may perform better making sense of complex document layouts ie. such as with horizontally stacked tables.\n \nIn this demonstration, we can transcribe our bank statement scans to markdown text for the purpose of further processing. With markdown, we can retain tables or columnar data found in the document. We'll employ two optimisations however as a workaround for token and timeout limits (1) we'll only transcribe one page at a time and (2) we'll shrink the pages just a little just enough to speed up processing but not enough to reduce our required resolution."
},
"typeVersion": 1
},
{
"id": "49deef00-4617-4b19-a56f-08fd195dfb82",
"name": "Google Gemini Chat Model1",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
1760,
480
],
"parameters": {
"options": {
"safetySettings": {
"values": [
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE"
}
]
}
},
"modelName": "models/gemini-1.5-pro-latest"
},
"credentials": {
"googlePalmApi": {
"id": "dSxo6ns5wn658r8N",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "8e9c5d1d-d610-4bad-8feb-7ff0d5e1e64f",
"name": "Sticky Note4",
"type": "n8n-nodes-base.stickyNote",
"position": [
1440,
80
],
"parameters": {
"color": 7,
"width": 719.7534883720941,
"height": 574.3134883720929,
"content": "## 4. Extract Key Data Confidently From Statement\n[Read more about the Information Extractor](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.information-extractor)\n\nWith our newly generated transcript, let's pull just the deposit line items from our statement. Processing all pages together as images may have been compute-extensive but as text, this is usually no problem at all for our LLM.\n\nFor our example bank statement PDF, the resulting extraction should be 8 table rows where a value exists in the \"deposits\" column."
},
"typeVersion": 1
},
{
"id": "f849ad3c-69ec-443c-b7cd-ab24e210af73",
"name": "Sticky Note6",
"type": "n8n-nodes-base.stickyNote",
"position": [
-640,
500
],
"parameters": {
"color": 5,
"width": 366.00558139534894,
"height": 125.41023255813957,
"content": "### 💡 About the Example PDF\nScanned PDFs (ie. where each page is a scanned image) are a use-case where extracting PDF text content will not work. Vision models are a great solution as this workflow aims to demonstrate!"
},
"typeVersion": 1
},
{
"id": "be6f529b-8220-4879-bd99-4333b4d764b6",
"name": "Combine All Pages",
"type": "n8n-nodes-base.aggregate",
"position": [
1580,
320
],
"parameters": {
"options": {},
"fieldsToAggregate": {
"fieldToAggregate": [
{
"renameField": true,
"outputFieldName": "pages",
"fieldToAggregate": "text"
}
]
}
},
"typeVersion": 1
},
{
"id": "2b35755c-7bae-4896-b9f9-1e9110209526",
"name": "Sticky Note5",
"type": "n8n-nodes-base.stickyNote",
"position": [
-190.1172093023256,
280
],
"parameters": {
"width": 199.23348837209306,
"height": 374.95069767441856,
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n### Privacy Warning!\nThis example uses a public third party service. If your data is senstive, please swap this out for the self-hosted version!"
},
"typeVersion": 1
},
{
"id": "f638ba05-9ae2-447f-82af-eb22d8b9d6f1",
"name": "Extract All Deposit Table Rows",
"type": "@n8n/n8n-nodes-langchain.informationExtractor",
"position": [
1760,
320
],
"parameters": {
"text": "= {{ $json.pages.join('---') }}",
"options": {
"systemPromptTemplate": "This statement contains tables with rows showing deposit and withdrawal made to the user's account. Deposits and withdrawals are identified by have the amount in their respective columns. What are the deposits to the account found in this statement?"
},
"schemaType": "manual",
"inputSchema": "{\n \"type\": \"array\",\n \"items\": {\n\t\"type\": \"object\",\n\t\"properties\": {\n \"date\": { \"type\": \"string\" },\n \"description\": { \"type\": \"string\" },\n \"amount\": { \"type\": \"number\" }\n\t}\n }\n}"
},
"typeVersion": 1
},
{
"id": "cf1e8d85-5c92-469d-98af-7bdd5f469167",
"name": "Sticky Note7",
"type": "n8n-nodes-base.stickyNote",
"position": [
913.9944186046506,
620
],
"parameters": {
"color": 5,
"width": 498.18790697674433,
"height": 130.35162790697677,
"content": "### 💡 Don't use Google?\nFeel free to swap the model out for any state-of-the-art multimodal model which supports image inputs such as GPT4o(-mini) or Claude Sonnet/Opus. Note, I've found Gemini to produce the most accurate and consistent for this example use-case so no guarantees if you switch!"
},
"typeVersion": 1
},
{
"id": "20f33372-a6b6-4f4d-987d-a94c85313fa8",
"name": "Transcribe to Markdown",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
980,
280
],
"parameters": {
"text": "transcribe the image to markdown.",
"messages": {
"messageValues": [
{
"message": "=You help transcribe documents to markdown, keeping faithful to all text printed and visible to the best of your ability. Ensure you capture all headings, subheadings, titles as well as small print.\nFor any tables found with the document, convert them to markdown tables. If table row descriptions overflow into more than 1 row, concatanate and fit them into a single row. If two or more tables are adjacent horizontally, stack the tables vertically instead. There should be a newline after every markdown table.\nFor any graphics, use replace with a description of the image. Images of scanned checks should be converted to the phrase \"<scanned image of check>\"."
},
{
"type": "HumanMessagePromptTemplate",
"messageType": "imageBinary"
}
]
},
"promptType": "define"
},
"typeVersion": 1.4
}
],
"pinData": {},
"connections": {
"Sort Pages": {
"main": [
[
{
"node": "Resize Images For AI",
"type": "main",
"index": 0
}
]
]
},
"Images To List": {
"main": [
[
{
"node": "Sort Pages",
"type": "main",
"index": 0
}
]
]
},
"Extract Zip File": {
"main": [
[
{
"node": "Images To List",
"type": "main",
"index": 0
}
]
]
},
"Combine All Pages": {
"main": [
[
{
"node": "Extract All Deposit Table Rows",
"type": "main",
"index": 0
}
]
]
},
"Get Bank Statement": {
"main": [
[
{
"node": "Split PDF into Images",
"type": "main",
"index": 0
}
]
]
},
"Resize Images For AI": {
"main": [
[
{
"node": "Transcribe to Markdown",
"type": "main",
"index": 0
}
]
]
},
"Split PDF into Images": {
"main": [
[
{
"node": "Extract Zip File",
"type": "main",
"index": 0
}
]
]
},
"Transcribe to Markdown": {
"main": [
[
{
"node": "Combine All Pages",
"type": "main",
"index": 0
}
]
]
},
"Google Gemini Chat Model": {
"ai_languageModel": [
[
{
"node": "Transcribe to Markdown",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Google Gemini Chat Model1": {
"ai_languageModel": [
[
{
"node": "Extract All Deposit Table Rows",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"When clicking ‘Test workflow’": {
"main": [
[
{
"node": "Get Bank Statement",
"type": "main",
"index": 0
}
]
]
}
}
}Pour qui est ce workflow ?
Ce workflow s'adresse aux entreprises et aux équipes qui traitent régulièrement des documents PDF et des images, notamment dans les secteurs de la finance, de la comptabilité et de l'administration. Il est conçu pour des utilisateurs ayant un niveau technique intermédiaire, souhaitant optimiser leurs processus de gestion documentaire.
Problème résolu
Ce workflow résout le problème de la gestion manuelle des documents, qui peut être chronophage et sujet à des erreurs. En automatisant le traitement des relevés bancaires et des fichiers PDF, les utilisateurs peuvent gagner un temps précieux et garantir une meilleure précision dans l'extraction des données. Cela réduit également le risque de perte d'informations critiques et améliore la réactivité des équipes face aux demandes d'analyse.
Étapes du workflow
Étape 1 : le workflow est déclenché manuellement par l'utilisateur. Étape 2 : il utilise le modèle Google Gemini pour analyser le contenu des documents. Étape 3 : les fichiers sont triés pour une meilleure organisation. Étape 4 : les PDF sont convertis en images, facilitant ainsi leur traitement. Étape 5 : les images sont redimensionnées pour être adaptées à l'utilisation avec des outils d'IA. Étape 6 : les notes autocollantes sont ajoutées pour fournir des commentaires contextuels. Étape 7 : toutes les informations extraites sont combinées et transcrites au format Markdown pour une utilisation future.
Guide de personnalisation du workflow n8n
Pour personnaliser ce workflow, vous pouvez modifier le déclencheur manuel en le remplaçant par un webhook pour une automatisation plus fluide. Ajustez les paramètres du modèle Google Gemini pour affiner les résultats selon vos besoins spécifiques. Vous pouvez également changer les dimensions des images lors de la redimensionnement pour les adapter à vos exigences. Enfin, n'oubliez pas de sécuriser le flux en vérifiant les autorisations d'accès aux fichiers Google Drive et en surveillant les performances du workflow pour garantir son bon fonctionnement.