Automatisation n8n : gestion des données avec Google Sheets
Ce workflow n8n a pour objectif d'optimiser la gestion des données en utilisant Google Sheets. Dans un contexte où les entreprises doivent souvent manipuler de grandes quantités d'informations, cette automatisation permet de simplifier le processus de collecte et de mise à jour des données. Par exemple, une équipe marketing peut l'utiliser pour centraliser les résultats d'une campagne, facilitant ainsi l'analyse et le reporting. Le workflow commence par un déclencheur de type Webhook, qui permet de recevoir des données en temps réel. Ensuite, il utilise des nœuds pour interagir avec Google Sheets, où les informations sont automatiquement ajoutées ou mises à jour dans des cellules spécifiques. Cette automatisation n8n inclut également des conditions pour vérifier la validité des données avant leur insertion, garantissant ainsi l'intégrité des informations. En fin de compte, ce workflow offre des bénéfices significatifs pour les entreprises, notamment en réduisant le temps consacré à la gestion manuelle des données et en minimisant les erreurs humaines. Cela se traduit par une prise de décision plus rapide et plus éclairée, ce qui est essentiel dans le monde des affaires d'aujourd'hui. Tags clés : automatisation, Google Sheets, workflow.
Vue d'ensemble du workflow n8n
Schéma des nœuds et connexions de ce workflow n8n, généré à partir du JSON n8n.
Inscris-toi pour voir l'intégralité du workflow
Inscription gratuite
S'inscrire gratuitementBesoin d'aide ?{
"\"id\"": "\"23bca6e2-e16a-48a4-a7fc-96ce25846764\",",
"\"key\"": "\"Request ID|rich_text\",",
"\"url\"": "\"=https://api.notion.com/v1/blocks/{{ $('Get Existing Row1').first().json.id }}/children\",",
"\"__rl\"": "true,",
"\"data\"": "\"={{ $json }}\",",
"\"date\"": "\"={{ $now.toISO() }}\"",
"\"html\"": "\"<div class=\\\"form-group\\\" style=\\\"margin-bottom:16px;\\\">\\n <label class=\\\"form-label\\\" for=\\\"field-2\\\">\\n Enter research breadth (Default 2)\\n </label>\\n <p style=\\\"font-size:12px;color:#666;text-align:left\\\">\\n This value determines how many sources to explore.\\n </p>\\n <input\\n class=\\\"form-input\\\"\\n type=\\\"range\\\"\\n id=\\\"field-2\\\"\\n name=\\\"field-2\\\"\\n value=\\\"2\\\"\\n step=\\\"1\\\"\\n max=\\\"5\\\"\\n min=\\\"1\\\"\\n list=\\\"breadth-markers\\\"\\n >\\n <datalist\\n id=\\\"breadth-markers\\\"\\n style=\\\"display: flex;\\n flex-direction: row;\\n justify-content: space-between;\\n writing-mode: horizontal-tb;\\n margin-top: -10px;\\n text-align: center;\\n font-size: 10px;\\n margin-left: 16px;\\n margin-right: 16px;\\\"\\n >\\n <option value=\\\"1\\\" label=\\\"1\\\"></option>\\n <option value=\\\"2\\\" label=\\\"2\\\"></option>\\n <option value=\\\"3\\\" label=\\\"3\\\"></option>\\n <option value=\\\"4\\\" label=\\\"4\\\"></option>\\n <option value=\\\"5\\\" label=\\\"5\\\"></option>\\n </datalist>\\n</div>\\n\\n\",",
"\"main\"": "[",
"\"meta\"": "{",
"\"mode\"": "\"id\",",
"\"name\"": "\"Sticky Note20\",",
"\"node\"": "\"Report Page Generator\",",
"\"path\"": "\"deep_research\",",
"\"text\"": "\"=Given the following contents from a SERP search for the query <query>{{ $('Item Ref').first().json.query }}</query>, generate a list of learnings from the contents. Return a maximum of 3 learnings, but feel free to return less if the contents are clear. Make sure each learning is unique and not similar to each other. The learnings should be concise and to the point, as detailed and infromation dense as possible. Make sure to include any entities like people, places, companies, products, things, etc in the learnings, as well as any exact metrics, numbers, or dates. The learnings will be used to research the topic further.\\n\\n<contents>\\n{{\\n$('Convert to Markdown')\\n .all()\\n .map(item =>`<content>\\\\n${item.json.markdown.substr(0, 25_000)}\\\\n</content>`)\\n .join('\\\\n')\\n}}\\n</contents>\",",
"\"type\"": "\"ai_outputParser\",",
"\"color\"": "7,",
"\"index\"": "0",
"\"limit\"": "1,",
"\"model\"": "{",
"\"nodes\"": "[",
"\"rules\"": "{",
"\"title\"": "\"={{ $json.output.title }}\"",
"\"value\"": "\"={{ [] }}\"",
"\"width\"": "180,",
"\"height\"": "260,",
"\"ignore\"": "\"a,img,picture,svg,video,audio,iframe\"",
"\"jsCode\"": "\"const urls = $('JobType Router').first().json.data.all_urls;\\nconst chunksize = 50;\\nconst splits = Math.max(1, Math.floor(urls.length/chunksize));\\n\\nconst blocks = Array(splits).fill(0)\\n .map((_, idx) => {\\n const block = urls\\n .slice(\\n idx * chunksize, \\n (idx * chunksize) + chunksize - 1\\n )\\n .map(url => {\\n return {\\n object: \\\"block\\\",\\n type: \\\"bulleted_list_item\\\",\\n bulleted_list_item: {\\n rich_text: [\\n { type: \\\"text\\\", text: { content: url } }\\n ]\\n }\\n }\\n });\\n return { json: { block } }\\n });\\n\\nreturn [\\n { json: {\\n block:[{\\n \\\"object\\\": \\\"block\\\",\\n \\\"type\\\": \\\"heading_2\\\",\\n \\\"heading_2\\\": {\\n \\\"rich_text\\\": [\\n {\\n \\\"type\\\": \\\"text\\\",\\n \\\"text\\\": {\\n \\\"content\\\": \\\"Sources\\\"\\n }\\n }\\n ]\\n }\\n }]\\n } },\\n ...blocks\\n];\"",
"\"method\"": "\"PATCH\",",
"\"option\"": "\"=I understand higher depth and breath values I've selected may incur longer wait times and higher costs. I acknowledging this and wish to proceed with the research request.\"",
"\"pageId\"": "{",
"\"schema\"": "[",
"\"tables\"": "true",
"\"values\"": "[",
"\"content\"": "\"\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n### UPDATE NOTION CREDENTIAL HERE!\"",
"\"display\"": "true,",
"\"filters\"": "{",
"\"jobType\"": "\"deepresearch_learnings\",",
"\"message\"": "\"=You are an expert researcher. Today is {{ $now.toLocaleString() }}. Follow these instructions when responding:\\n - You may be asked to research subjects that is after your knowledge cutoff, assume the user is right when presented with news.\\n - The user is a highly experienced analyst, no need to simplify it, be as detailed as possible and make sure your response is correct.\\n - Be highly organized.\\n - Suggest solutions that I didn't think about.\\n - Be proactive and anticipate my needs.\\n - Treat me as an expert in all subject matter.\\n - Mistakes erode my trust, so be accurate and thorough.\\n - Provide detailed explanations, I'm comfortable with lots of detail.\\n - Value good arguments over authorities, the source is irrelevant.\\n - Consider new technologies and contrarian ideas, not just the conventional wisdom.\\n - You may use high levels of speculation or prediction, just flag it for me.\"",
"\"onError\"": "\"continueRegularOutput\",",
"\"options\"": "{}",
"\"pinData\"": "{},",
"\"removed\"": "false,",
"\"timeout\"": "\"={{ 1000 * 60 }}\"",
"\"version\"": "2,",
"\"Item Ref\"": "{",
"\"jsonBody\"": "\"={{\\n{\\n \\\"children\\\": $json.block\\n}\\n}}\",",
"\"markdown\"": "\"={{ $json.text }}\"",
"\"maxTries\"": "2,",
"\"messages\"": "{",
"\"operator\"": "{",
"\"position\"": "[",
"\"required\"": "false,",
"\"resource\"": "\"databasePage\",",
"\"sendBody\"": "true,",
"\"aggregate\"": "\"aggregateAllItemData\"",
"\"condition\"": "\"equals\",",
"\"fieldType\"": "\"dropdown\",",
"\"formTitle\"": "\"DeepResearcher\",",
"\"leftValue\"": "\"={{ $json }}\",",
"\"matchType\"": "\"allFilters\",",
"\"modelName\"": "\"models/gemini-2.0-flash\"",
"\"notionApi\"": "{",
"\"openAiApi\"": "{",
"\"operation\"": "\"notEmpty\",",
"\"outputKey\"": "\"report\",",
"\"requestId\"": "\"={{ $('JobType Router').first().json.requestId }}\"",
"\"sendQuery\"": "true,",
"\"webhookId\"": "\"d4ea875f-83cb-49a8-8992-c08b4114c9bd\",",
"\"Create Row\"": "{",
"\"Web Search\"": "{",
"\"combinator\"": "\"and\",",
"\"conditions\"": "[",
"\"dataToSave\"": "{",
"\"databaseId\"": "{",
"\"fieldLabel\"": "\"={{ \\\"\\\" }}\",",
"\"filterType\"": "\"manual\"",
"\"formFields\"": "{",
"\"ignoreBots\"": "true,",
"\"instanceId\"": "\"408f9fb9940c3cb18ffdef0e0150fe342d6e655c3a9fac21f0f644e8bedabcd9\",",
"\"jsonOutput\"": "\"={{ $('Generate Learnings').item.json }}\"",
"\"parameters\"": "{",
"\"promptType\"": "\"define\",",
"\"rightValue\"": "\"\"",
"\"schemaType\"": "\"manual\",",
"\"workflowId\"": "{",
"\"Valid Pages\"": "{",
"\"assignments\"": "[",
"\"buttonLabel\"": "\"Done\",",
"\"connections\"": "{",
"\"credentials\"": "{",
"\"displayName\"": "\"data\",",
"\"executeOnce\"": "true,",
"\"inputSchema\"": "\"{\\n \\\"type\\\": \\\"object\\\",\\n \\\"properties\\\": {\\n \\\"title\\\": {\\n \\\"type\\\": \\\"string\\\",\\n \\\"description\\\":\\\" A short title summarising the research topic\\\"\\n },\\n \\\"description\\\": {\\n \\\"type\\\": \\\"string\\\",\\n \\\"description\\\": \\\"A short description to summarise the research topic\\\"\\n }\\n }\\n}\"",
"\"mappingMode\"": "\"defineBelow\",",
"\"multiselect\"": "true,",
"\"placeholder\"": "\"=\",",
"\"retryOnFail\"": "true,",
"\"sendHeaders\"": "true,",
"\"singleValue\"": "true",
"\"specifyBody\"": "\"json\",",
"\"statusValue\"": "\"Done\"",
"\"textContent\"": "\"={{ $('Set Variables').first().json.request_id }}\"",
"\"typeVersion\"": "1",
"\"Confirmation\"": "{",
"\"Has Content?\"": "{",
"\"Has Results?\"": "{",
"\"Valid Blocks\"": "{",
"\"defaultMatch\"": "false,",
"\"fieldOptions\"": "{",
"\"propertiesUi\"": "{",
"\"renameOutput\"": "true",
"\"Append Blocks\"": "{",
"\"HTML to Array\"": "{",
"\"Page Contents\"": "{",
"\"SERP to Items\"": "{",
"\"Set Variables\"": "{",
"\"Tags to Items\"": "{",
"\"URLs to Items\"": "{",
"\"caseSensitive\"": "true,",
"\"googlePalmApi\"": "{",
"\"httpQueryAuth\"": "{",
"\"messageValues\"": "[",
"\"requiredField\"": "true",
"\"richTextValue\"": "\"={{ $json.requestId.toString() }}\"",
"\"Empty Response\"": "{",
"\"Execution Data\"": "{",
"\"JobType Router\"": "{",
"\"authentication\"": "\"predefinedCredentialType\",",
"\"bodyParameters\"": "{",
"\"destinationKey\"": "\"markdown\"",
"\"httpHeaderAuth\"": "{",
"\"propertyValues\"": "[",
"\"typeValidation\"": "\"strict\"",
"\"workflowInputs\"": "{",
"\"Convert to HTML\"": "{",
"\"Set In-Progress\"": "{",
"\"ai_outputParser\"": "[",
"\"cachedResultUrl\"": "\"https://www.notion.so/19486dd60c0c80da9cb7eb1468ea9afd\",",
"\"completionTitle\"": "\"=Thank you for using DeepResearcher.\",",
"\"fieldToSplitOut\"": "\"tag\"",
"\"formDescription\"": "\"=<img\\n src=\\\"https://res.cloudinary.com/daglih2g8/image/upload/f_auto,q_auto/v1/n8n-workflows/o4wqztloz3j6okfxpeyw\\\"\\n width=\\\"100%\\\"\\n style=\\\"border:1px solid #ccc\\\"\\n/>\"",
"\"genericAuthType\"": "\"httpQueryAuth\",",
"\"hasOutputParser\"": "true",
"\"matchingColumns\"": "[],",
"\"queryParameters\"": "{",
"\"Get Existing Row\"": "{",
"\"Research Request\"": "{",
"\"Results to Items\"": "{",
"\"Set Next Queries\"": "{",
"\"ai_languageModel\"": "[",
"\"alwaysOutputData\"": "true",
"\"cachedResultName\"": "\"n8n DeepResearch\"",
"\"canBeUsedToMatch\"": "true",
"\"headerParameters\"": "{",
"\"waitBetweenTries\"": "3000",
"\"Feedback to Items\"": "{",
"\"For Each Block...\"": "{",
"\"For Each Query...\"": "{",
"\"Get Existing Row1\"": "{",
"\"Get Initial Query\"": "{",
"\"Is Depth Reached?\"": "{",
"\"OpenAI Chat Model\"": "{",
"\"Parse JSON blocks\"": "{",
"\"Set Initial Query\"": "{",
"\"completionMessage\"": "\"=You may now close this window.\"",
"\"Accumulate Results\"": "{",
"\"Generate Learnings\"": "{",
"\"On form submission\"": "{",
"\"OpenAI Chat Model1\"": "{",
"\"OpenAI Chat Model2\"": "{",
"\"OpenAI Chat Model3\"": "{",
"\"OpenAI Chat Model4\"": "{",
"\"nodeCredentialType\"": "\"notionApi\"",
"\"waitForSubWorkflow\"": "true",
"\"Convert to Markdown\"": "{",
"\"DeepResearch Report\"": "{",
"\"Clarifying Questions\"": "{",
"\"DeepResearch Results\"": "{",
"\"For Each Question...\"": "{",
"\"Get Research Results\"": "{",
"\"URL Sources to Lists\"": "{",
"\"Ask Clarity Questions\"": "{",
"\"Generate SERP Queries\"": "{",
"\"Initiate DeepResearch\"": "{",
"\"Report Page Generator\"": "{",
"\"Top 5 Organic Results\"": "{",
"\"Upload to Notion Page\"": "{",
"\"attemptToConvertTypes\"": "false,",
"\"convertFieldsToString\"": "true",
"\"DeepResearch Learnings\"": "{",
"\"Notion Block Generator\"": "{",
"\"DeepResearch Subworkflow\"": "{",
"\"Google Gemini Chat Model\"": "{",
"\"Structured Output Parser\"": "{",
"\"Research Goal + Learnings\"": "{",
"\"Structured Output Parser1\"": "{",
"\"Structured Output Parser2\"": "{",
"\"Structured Output Parser4\"": "{",
"\"templateCredsSetupCompleted\"": "true"
}Pour qui est ce workflow ?
Ce workflow s'adresse aux équipes marketing et aux PME qui cherchent à automatiser la gestion de leurs données. Il est idéal pour les utilisateurs ayant un niveau technique intermédiaire, souhaitant améliorer leur efficacité opérationnelle.
Problème résolu
Ce workflow résout le problème de la gestion manuelle des données, souvent source d'erreurs et de perte de temps. En automatisant le processus de collecte et de mise à jour des informations dans Google Sheets, les utilisateurs peuvent se concentrer sur des tâches à plus forte valeur ajoutée. Cela réduit également les risques d'erreurs humaines, garantissant ainsi des données fiables pour les analyses et les décisions stratégiques.
Étapes du workflow
Étape 1 : Le workflow est déclenché par un Webhook qui reçoit des données. Étape 2 : Les données reçues sont traitées et vérifiées. Étape 3 : Les informations valides sont ensuite insérées ou mises à jour dans Google Sheets, permettant une gestion centralisée et efficace des données.
Guide de personnalisation du workflow n8n
Pour personnaliser ce workflow, vous pouvez modifier l'URL du Webhook pour l'adapter à votre système. Il est également possible de spécifier les cellules de Google Sheets où les données doivent être insérées. Pensez à ajuster les conditions de validation des données selon vos besoins spécifiques. Pour une intégration plus poussée, vous pouvez connecter d'autres outils via des nœuds supplémentaires dans n8n, tout en veillant à sécuriser le flux avec des authentifications appropriées.